In world-leading semiconductor manufacturing, the device feature size keeps on reducing and with it processes become more challenging in the next technology node. The On Product Overlay (OPO) budget is therefore required to reduce further. Alignment is one of the key factors in reducing overlay wafer to wafer (W2W) variations. To save product area and reduce scribe line width, small alignment mark is evaluated to achieve the similar results as reference mark and to optimize the OPO performance. In this work, we will show the experimental results of small alignment mark and investigate the on product overlay performance by simulation.
In overlay (OVL) metrology the quality of measurements and the resulting reported values depend heavily on the measurement setup used. For example, in scatterometry OVL (SCOL) metrology a specific target may be measured with multiple illumination setups, including several apodization options, two possible laser polarizations, and multiple possible laser wavelengths. Not all possible setups are suitable for the metrology method as different setups can yield significantly different performance in terms of the accuracy and robustness of the reported OVL values. Finding an optimal measurement setup requires great flexibility in measurement, to allow for high-resolution landscape mapping (mapping the dependence of OVL, other metrics, and details of pupil images on measurement setup). This can then be followed by a method for analyzing the landscape and selecting an accurate and robust measurement setup. The selection of an optimal measurement setup is complicated by the sensitivity of metrology to variations in the fabrication process (process variations) such as variations in layer thickness or in the properties of target symmetry. The metrology landscape changes with process variations and maintaining optimal performance might require continuous adjustments of the measurement setup. Here we present a method for the selection and adjustment of an optimal measurement setup. First, the landscape is measured and analyzed to calculate theory-based accurate OVL values as well as quality metrics which depend on details of the pupil image. These OVL values and metrics are then used as an internal ruler (“self-reference”), effectively eliminating the need for an external reference such as CD-SEM. Finally, an optimal measurement setup is selected by choosing a setup which yields the same OVL values as the self-reference and is also robust to small changes in the landscape. We present measurements which show how a SCOL landscape changes within wafer, wafer to wafer, and lot to lot with intentionally designed process variations between. In this case the process variations cause large shifts in the SCOL landscape and it is not possible to find a common optimal measurement setup for all wafers. To deal with such process variations we adjust the measurement setup as needed. Initially an optimal setup is chosen based on the first wafer. For subsequent wafers the process stability is continuously monitored. Once large process variations are detected the landscape information is used for selecting a new measurement setup, thereby maintaining optimal accuracy and robustness. Methods described in this work are enabled by the ATL (Accurate Tunable Laser) scatterometry-based overlay metrology system.
KEYWORDS: Semiconducting wafers, Metrology, Critical dimension metrology, Scanners, Process control, Modulation, Scatterometry, Finite element methods, Signal to noise ratio, Single crystal X-ray diffraction
Lithography process control solutions require more exacting capabilities as the semiconductor industry goes forward to the 1x nm node DRAM device manufacturing. In order to continue scaling down the device feature sizes, critical dimension (CD) uniformity requires continuous improvement to meet the required CD error budget. In this study we investigate using optical measurement technology to improve over CD-SEM methods in focus, dose, and CD. One of the key challenges is measuring scanner focus of device patterns. There are focus measurement methods based on specially designed marks on scribe-line, however, one issue of this approach is that it will report focus of scribe line which is potentially different from that of the real device pattern. In addition, scribe-line marks require additional design and troubleshooting steps that add complexity. In this study, we investigated focus measurement directly on the device pattern. Dose control is typically based on using the linear correlation behavior between dose and CD. The noise of CD measurement, based on CD-SEM for example, will not only impact the accuracy, but also will make it difficult to monitor dose signature on product wafers. In this study we will report the direct dose metrology result using an optical metrology system which especially enhances the DUV spectral coverage to improve the signal to noise ratio. CD-SEM is often used to measure CD after the lithography step. This measurement approach has the advantage of easy recipe setup as well as the flexibility to measure critical feature dimensions, however, we observe that CD-SEM metrology has limitations. In this study, we demonstrate within-field CD uniformity improvement through the extraction of clean scanner slit and scan CD behavior by using optical metrology.
As semiconductor manufacturing technology progresses and the dimensions of integrated circuit elements shrink, overlay budget is accordingly being reduced. Overlay budget closely approaches the scale of measurement inaccuracies due to both optical imperfections of the measurement system and the interaction of light with geometrical asymmetries of the measured targets. Measurement inaccuracies can no longer be ignored due to their significant effect on the resulting device yield. In this paper we investigate a new approach for imaging based overlay (IBO) measurements by optimizing accuracy rather than contrast precision, including its effect over the total target performance, using wavelength tunable overlay imaging metrology. We present new accuracy metrics based on theoretical development and present their quality in identifying the measurement accuracy when compared to CD-SEM overlay measurements. The paper presents the theoretical considerations and simulation work, as well as measurement data, for which tunability combined with the new accuracy metrics is shown to improve accuracy performance.
Overlay is one of the most critical process control steps of semiconductor manufacturing technology. A typical advanced scheme includes an overlay feedback loop based on after litho optical imaging overlay metrology on scribeline targets. The after litho control loop typically involves high frequency sampling: every lot or nearly every lot. An after etch overlay metrology step is often included, at a lower sampling frequency, in order to characterize and compensate for bias. The after etch metrology step often involves CD-SEM metrology, in this case in-cell and ondevice. This work explores an alternative approach using spectroscopic ellipsometry (SE) metrology and a machine learning analysis technique. Advanced 1x nm DRAM wafers were prepared, including both nominal (POR) wafers with mean overlay offsets, as well as DOE wafers with intentional across wafer overlay modulation. After litho metrology was measured using optical imaging metrology, as well as after etch metrology using both SE and CD-SEM for comparison. We investigate 2 types of machine learning techniques with SE data: model-less and model-based, showing excellent performance for after etch in-cell on-device overlay metrology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.