Telops has a 20-year history in the design, construction, and deployment of thermal infrared hyperspectral imaging systems through the legacy Hyper-Cam line. Advances in critical subsystem technologies has allowed Telops to develop the next-generation of hyperspectral imaging systems with significant reductions in size, weight, and power requirements while maintaining imaging and data quality performance. This reduction in SWaP requirements yields a significant increase in deployment flexibility, allowing for increased capability for collecting actionable hyperspectral data of remote or difficult-to-access targets. Also taking benefit of the most recent data processing capabilities from modern electronics and computer systems, the real-time data analysis has enabled unprecedented ease of use and conviviality without compromise to performance. This presentation will serve as an overview of the system architecture and analysis capabilities of three next-generation thermal infrared hyperspectral imaging products. These platforms include a tripod-based system for ground measurements; an airborne platform designed for small, fixed-wing aircraft; and a small-footprint system designed for deployment on a quadcopter or other small UAV.
In this study, we investigated the assessment of the damaged area on composites ballistic plates subjected to high velocity impact. The active pulsed thermography technique was used for performing post-mortem analysis of the impacted specimens. Quantitative analysis of the damaged areas shows consistent results with the size of the projectile suggesting high precision of the quantification done in this work. This quantitative defect analysis combined with knowledge of projectile velocity allows for characterization of absorbed energy and differentiation of generated defect types. This allow for the evaluation of material efficiency in spreading absorbed energy over large areas. Our observations indicate that high velocity shots tend to induce smaller impact damage areas characterized primarily by fiber breakage, while low velocity shots tend to induce larger impact damage areas featuring predominantly delamination and matrix cracking damage mechanisms.
Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among
the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and
temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress
response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were
carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FASTM2K)
and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a
polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared
imaging in the midwave infrared (MWIR, 3 – 5 μm) spectral range can provide detailed information about the thermal
properties of materials undergoing mechanical testing.
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the Enfant-Jesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane’s unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Heat transfers are involved in many phenomena such as friction, tensile stress, shear stress and material rupture. Among the challenges encountered during the characterization of such thermal patterns is the need for both high spatial and temporal resolution. Infrared imaging provides information about surface temperature that can be attributed to the stress response of the material and breaking of chemical bounds. In order to illustrate this concept, tensile and shear tests were carried out on steel, aluminum and carbon fiber composite materials and monitored using high-speed (Telops FAST-M2K) and high-definition (Telops HD-IR) infrared imaging. Results from split-Hopkinson experiments carried out on a polymer material at high strain-rate are also presented. The results illustrate how high-speed and high-definition infrared imaging in the midwave infrared (MWIR, 3 – 5 μm) spectral range can provide detailed information about the thermal properties of materials undergoing mechanical testing.
There are many types of natural gas fields including shale formations that are common especially in the St-Lawrence Valley (Canada). Since methane (CH4), the major component of shale gas, is odorless, colorless and highly flammable, in addition to being a greenhouse gas, methane emanations and/or leaks are important to consider for both safety and environmental reasons. Telops recently launched on the market the Hyper-Cam Methane, a field-deployable thermal infrared hyperspectral camera specially tuned for detecting methane infrared spectral features under ambient conditions and over large distances. In order to illustrate the benefits of this novel research instrument for natural gas imaging, the instrument was brought on a site where shale gas leaks unexpectedly happened during a geological survey near the EnfantJesus hospital in Quebec City, Canada, during December 2014. Quantitative methane imaging was carried out based on methane’s unique infrared spectral signature. Optical flow analysis was also carried out on the data to estimate the methane mass flow rate. The results show how this novel technique could be used for advanced research on shale gases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.