This paper presents a fabrication method of two-dimensional micro patterns for adaptive optics with a micrometric or sub-micrometric period to be used for fabrication of micro lens array or two-dimensional diffraction gratings. A multibeam two-axis Lloyd’s mirror interferometer is employed to carry out laser interference lithography for the fabrication of two-dimensional grating structures. In the proposed instrument, the optical setup consists of a light source providing a laser beam, a multi-beam generator, two plane mirrors to generate a two-dimensional XY interference pattern and a substrate on which the XY interference pattern is to be exposed. In this paper, pattern exposure tests are carried out by the developed optical configuration optimized by computer simulations. Some experimental results of the XY pattern fabrication will be reported.
A multiprobe surface encoder for optical metrology of six-degree-of-freedom (six-DOF) planar motions is presented. The surface encoder is composed of an XY planar scale grating with identical microstructures in X- and Y-axes and an optical sensor head. In the optical sensor head, three paralleled laser beams were used as laser probes. After being divided by a beam splitter, the three laser probes were projected onto the scale grating and a reference grating with identical microstructures, respectively. For each probe, the first-order positive and negative diffraction beams along the X- and Y-directions from the scale grating and from the reference grating superimposed with each other and four pieces of interference signals were generated. Three-DOF translational motions of the scale grating Δx, Δy, and Δz can be obtained simultaneously from the interference signals of each probe. Three-DOF angular error motions θX, θY, and θZ can also be calculated simultaneously from differences of displacement output variations and the geometric relationship among the three probes. A prototype optical sensor head was designed, constructed, and evaluated. Experimental results verified that this surface encoder could provide measurement resolutions of subnanometer and better than 0.1 arc sec for three-DOF translational motions and three-DOF angular error motions, respectively.
For measuring the surface profile of many micro-optical components which are made of non-conductive material, such as diffractive grating and Fresnel lens, with complicated shapes on their surfaces, the electrostatic force microscopy (EFM) was recommended in noncontact condition. When a bias voltage is applied between the conducting probe tip and a back electrode where a non-conducting sample was put on, an electrostatic force will be generated between the probe tip and the sample surface. The electrostatic force will change with the distance between the probe tip and the sample surface. Firstly, the relationship between the electrostatic force and the tip-sample distance was analyzed based on the dielectric polarization theory. The theoretical result shows that the electrostatic force is proportional to 1/d2, where d is the distance between the probe tip and sample surface. Then, a numerical method (finite element method -FEM) was employed to calculate the electrostatic force and the result shows accordance with the theoretical method. Finally, the prototype of a scanning electrostatic force microscopy was built which is composed of a conducting probe unit with a Z scanner driven by piezoelectric actuators, a XY scanner unit for mounting the sample and back electrode and a circuit unit for detecting the frequency shift. The force curve, which shows the relationship between the electrostatic force and the tip-sample distance, was achieved by using the EFM prototype. All results demonstrated that it is feasible for using the EFM system to measure the surface profile of non-conductor.
A nanopipette ball probe has been introduced for the dimensional measurement of the micrometer-scale structures. A hollow glass nanopipette, which is fabricated by thermal pulling process, is used as the shaft of the probe for the detection of the contact. Since the stiffness of the glass nanopipette is lower than that of metal shaft which is similar size of the glass nanopipette, the contact force between the probe and the sample will be able to reduce in comparison with the probe of the metal shaft. The edge of the nanopipette is filled with the thermosetting resin, and a micro glass sphere with 9 mm diameter is fixed on the edge of the nanopipette probe by the thermosetting resin. By attaching the micro sphere at the edge of the nanopipette, the edge of the probe will be possible to maintain a uniform shape in all directions. With regard to the detection of the contact, the method of the shear-force detection has been employed because of its high-sensitivity and nanometer-scale resolution. The resolution and the sensitivity of the nanopipette probe are evaluated, and then surface profile measurement of the microstructure is demonstrated.
This keynote starts from an overview of micro-optics from fundamental functions, fabrication methods and applications
in precision engineering and nanotechnology. State-of-the-art measuring systems for surface form metrology of microoptics
with micro-structured surfaces, including diffractive micro-optics such as diffraction gratings and refractive
micro-optics such as micro lenses and micro-lens arrays, are then be presented. The measuring systems introduced in the
presentation are classified into scanning probe microscope-based systems, mechanical stylus profiling systems and
optical evaluation systems. Related research activities carried out in the authors' group are also highlighted.
To fabricate a scale grating for a surface encoder in a cost-effective way, a blue laser diode with a wavelength of 405 nm is employed in a Lloyd’s mirror interferometer to carry out interference lithography (IL) of the grating. The beams from the laser diode are collimated by an aspherical collimating lens to form beams with a diameter of 50 mm. These beams are then projected towards the Lloyd’s mirror and the grating substrate, which are aligned perpendicularly with each other and are mounted on a rotary stage. One half of the beam directly goes to the grating substrate, and the other half reaches to the grating substrate after being reflected by the mirror. The direct beam and the reflected beam interference with each other to generate and expose the interference fringes, which correspond to the scale grating structures, on the substrate coated with a photoresist layer. The pitch and area of the grating structures are set to be 570 nm and around 300 mm2, respectively. The fabricated grating structures are evaluated with an AFM to investigate the influence of the spectrum width of the laser beam.
This paper presents the analysis of a prototype scanning electrostatic force microscope (SEFM) system developed for noncontact surface profile measurement. In the SEFM system, with a dual height method, the distance between the probe tip and the sample surface can be accurately obtained through removing the influence of the electric field distribution on the sample surface. Since the electrostatic force is greatly influenced by the capacitance between the probe tip and the sample surface, a new approach for modeling and analysis of the distribution of capacitance between the probe tip with an arbitrary shape and the sample surface with a random topography by using the finite difference method (FDM) is proposed. The electrostatic forces calculated by the FDM method and the conventional sphere-plane model are compared to verify the validity of the FDM method. The frequency shift values measured by experiment are also compared with the simulation results computed by the FDM method. It has been demonstrated that the electrostatic force between arbitrary shapes of the probe tip and the sample surface can be well calculated by the finite difference method.
In this study, we developed novel techniques of nanometer-scale measurement and deposition using an atomic force
microscope (AFM) with a nanopipette in liquid condition. The nanopipette, filled with CuSO4 electrolyte solution, was
employed as the AFM probe. Observation and deposition of nanometer-scale Cu dots were carried out using the
nanopipette probe. In order to avoid drying of the nanopipette solution and clogging of the probe-edge aperture, Cu dots
were deposited and measured in liquid condition. As for the measurement of the surface, the nanopipette probe was
glued on a tuning fork quartz crystal resonator (TF-QCR) to detect a probe oscillation and vertically oscillated to use a
method of frequency modulation in tapping-mode AFM. With regard to the deposition of nanometer-scale Cu dot, an
electrode wire inside the electrolyte-filled nanopipette and conductive surface of Au coated glass slide were employed as
the anode and cathode, respectively. By utilizing the probe-surface distance control during the deposition, nanometerscale
Cu dot were successfully deposited on Au surface without the diffusion. Then, the deposited dots were observed by
using the nanopipette probe. This technique of the local deposition in the liquid would be applicable for various fields
such as fabrication of micro/nanometer-scale devices and arrangement of biological samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.