The use of multilayer processes in advanced ArF patterning schemes continues to increase as device critical dimensions shrink. In a multilayer stack, underlayer materials play a critical role in terms of gap fill, planarization and etch resistance to enable high resolution and high aspect ratio patterning. The emerging quadlayer imaging process requires a unique spin on carbon (SOC) layer with high thermal stability to withstand subsequent deposition of an inorganic hard mask layer, commonly deposited via chemical vapor deposition (CVD). The thermal stability requirement associated with CVD compatibility largely limits the options of organic materials, which mostly decompose in the 300-450°C range. Thermal shrinkage and coefficient of thermal expansion (CTE) differences between layers are other key considerations in designing a high temperature stable, CVD compatible SOC material. Furthermore, the SOC polymer resin must be compatible with solvents and spin on products commonly used in the FAB. This paper highlights the development of a novel CVD compatible HT-SOC platform with excellent thermal stability (>500°C) and good FAB drain line compatibility. In addition, this polyaromatic SOC platform shows various improvements compared to traditional Novolacbased SOC, including reduced shrinkage, good gap fill, improved planarization, and low defectivity. Robust formulation design, high quality raw materials, and advanced metal removal technique synergistically enabled manufacturing of multigallon HT-SOC product with high quality. Application specific versions are available for more demanding planarization requirement and applications that require good adhesion to metal substrate. In addition, a newly developed method for quantitative measurement of long-range planarization was used to validate new material designs aimed at improving planarization.
A trilayer stack of spin-on-carbon (SOC), silicon anti-reflective coating (SiARC) and photoresist (PR) is often used to enable high resolution implant layers for integrated circuit manufacturing. Damage to substrates from SiARC removal using dry etching or aqueous hydrogen fluoride has increased the demand for innovative SiARC materials for implant lithography process. Wet strippable SiARCs (WS-SiARCs) capable of stripping under mild conditions such as SC1 (ammonium hydroxide/hydrogen peroxide/water) while maintaining key performance metrics of standard SiARCs is highly desirable. Minimizing the formation of Si-O-Si linkages by introducing organic crosslink sites was effective to impart SC1 solubility particularly after O2 dry etching. Incorporation of acidic groups onto the crosslinking site further improved SC1 solubility. A new siloxane polymer architecture that has SC1 active functionality in the polymer backbone was developed to further enhance SC1 solubility. A new SiARC formulation based on the new siloxane polymer achieved equivalent lithographic performances to a classic SiARC and SC1 strip rate >240Å/min under a relatively low concentration SC1 condition such as ammonium hydroxide/hydrogen peroxide/water=1/1/40.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.