RVS has made a significant breakthrough in the development of a 640 × 512 array with a unit cell size of
20μm × 20 μm and performance equivalent to that of the 25μm arrays. The successful development of this array is the
first step in achieving mega-pixel formats. This FPA is designed to ultimately achieve performance near the
temperature fluctuation limited NETD (<20mK, f/1, 30 Hz). The SB-300 is a highly productized readout and is
designed to achieve very good sensitivity (low NETD and low spatial noise) and good dynamic range. The improved
performance is through bolometer structure improvements and an innovative ROIC design. It also has a simple and
flexible electrical interface which allows external electronics to be small, light, low-cost, and low-power. Almost all
adjustments can be made through the serial interface; hence there is no need for external adjustable (DAC) circuitry.
The improved power supply rejection helps maintain highly stable detector and strip resistor bias voltages which helps
reduce spatial noise and image artifacts.
We will show updated performance and imagery on these arrays, which is currently being measured at <30mK, f/1,555
30 Hz. Pixel operability is greater than 99.5% on most FPAs, where the uncorrected responsivity nonuniformity is less
than 4% (sigma/mean), and time constant for these arrays was measured at <8msec. We will report detailed FPA
performance results including responsivity, noise, uniformity and pixel operability. We also plan to present video
imagery from the most recent FPAs. The reduction in pixel size offers several potential benefits for IR systems. For a
given system resolution (IFOV) requirement, the 20 μm pixel will allow an optical volume that is 50 % the size of a 25
μm based system!
We will also provide an update on the enhanced performance and yield producibility of our NVESD ManTech
640 × 480 25 μm arrays, and also show data on 25 μm arrays that have been designed for faster time constants (5 ms),
while maintaining high performance.
We will also show the improvement in our uncooled 320 × 240 and 640 × 480 sensor electronics in terms of reduced
power and size for helmet and rifle mounted sensors.
Raytheon is producing high-quality 320 x 240 microbolometer FPAs with 25 μm pitch pixels. The 320 x 240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 μm pixels. Typical NETD values for these FPAs are <50mK with an f/1 aperture and operating at 30 Hz frame rates. Pixel operability is greater than 99.9% on most FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). These 25 μm microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. These arrays have produced excellent image quality, and are currently fielded in a variety of demonstration systems. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased, and also has enabled the development of a large-format 640 x 480 FPA array. Raytheon is producing these arrays with excellent sensitivity and typical NETD values of <50mK with an f/1 aperture and operating at 30 Hz frame rates. These arrays have excellent operability and image quality. Several dual FOV prototype 640 x 480 systems have been delivered under the LCMS and UAV programs. RVS has developed a flexible uncooled front end (UFE) electronics that will serve as the basis for the camera engine systems using 320 x 240 arrays. RVS has developed a 640 x 480 Common Uncooled Engine (CUE) which is intended for small pixel, high performance applications. The CUE is the ideal cornerstone for ground and airborne systems, multi-mode sensor, weapon sight or seeker architectures, and commercial surveillance.
The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 x 480 format focal plane array (FPA) engine. The 640 x 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort was to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging. In addition, the Advanced Uncooled Thermal Imaging Sensors (AUTIS) Program extended this development to light-weight, compact unmanned aerial vehicle (UAV) applications.
Daniel Murphy, Adam Kennedy, Michael Ray, Richard Wyles, Jessica Wyles, James Asbrock, C. Hewitt, David Van Lue, T. Sessler, John Anderson, Daryl Bradley, Richard Chin, H. Gonzales, C. Le Pere, Thomas Kostrzewa
Raytheon Vision Systems (RVS) has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon is producing high-quality 320 x 240 microbolometer FPAs with 25 μm pitch pixels. The 320 x 240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 μm pixels. The array average NETD value for these FPAs is about 30 mK with an f/1 aperture and operating at 30 Hz frame rates. Pixel operability is greater than 99% on most FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). These 25 μm microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been achieved as a result of an advanced micro machining fabrication process, which allows maximization of both the thermal isolation and the optical fill-factor. These arrays have produced excellent image quality, and are currently fielded in demonstration systems. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution (IFOV) requirement, the 25 μm pxiels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. These FPAs are applicable to wide-field-of-view, long-range surveillance and targeting missions. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased, and also has enabled the development of a large-format 640 x 480 FPA array. Raytheon is producing these arrays with very good sensitivity. These arrays have excellent operability and image quality. Several dual FOV prototype systems have been delivered under the LCMS and UAV programs, and are under evaluation at NVESD. Raytheon Vision Systems (RVS) has developed a flexible uncooled front end (UFE) electronics that will serve as the basis for camera engine systems using 320 x 240 and 640 x 480 FPAs. The focus has been to develop architecture suitable for a wide variety of systems from low cost modest performance to high performance military applications. This product has been designed with military environmental and shock and vibration conditions in mind. Intended for small pxiel, high performance applications, the UFE is the ideal cornerstone for ground and airborne UAV, multi-mode sneosr, weapon sight or seeker architectures.
Daniel Murphy, Michael Ray, Richard Wyles, James Asbrock, Nancy Lum, Jessica Wyles, C. Hewitt, Adam Kennedy, David Van Lue, John Anderson, Daryl Bradley, Richard Chin, Thomas Kostrzewa
Raytheon IR Operations (RIO) has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon has produced the first high-quality 320×240 microbolometer FPAs wiht 25μm pitch pixels. The 320×240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50μm pixels. The average NETD value for these FPAs is about 35 mK with an f/1 aperture and oepratin at 30 Hz frame rates. Good pixel operability and excellent image quality have been demonstrated. Pixel operability is greater than 99 percent on some FPAs, and uncorrected responsivity nonconformity is less than 4%. The microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been acheived as a result of an advanced micromachining fabrication process. The process allwos maximization of both the thermal isolation and the optical fill-factor. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution requirement, the 25 μm pixels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased. The pixel size reduction has enabled the development of a large-format 640×480 FPA array. Raytheon has produced arrays with very good sensitivity, operability, and excellent image quality. These FPAs are applicable to wide-field-of-view, long range surveillance and targeting missions. Raytheon is also developing a high performance 160×128 FPA that is designed for applications where miniaturizaitno and temperature invariance are required as well as low cost and low power.
Daniel Murphy, Michael Ray, Richard Wyles, James Asbrock, Nancy Lum, Jessica Wyles, C. Hewitt, Adam Kennedy, David Van Lue, John Anderson, Daryl Bradley, Richard Chin, Thomas Kostrzewa
Raytheon Infrared Operations (RIO) has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon has produced the first high-quality 320x240 microbolometer FPAs with 25 micrometers pitch pixels. The 320 x240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 micrometers pixels. The average NETD value for these FPAs is about 35 mK with an f/1 aperture and operating at 30 Hz frame rates. Good pixel operability and excellent image quality have been demonstrated. Pixel operability is greater than 99% on some FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). The microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been achieved as a result of an advanced micromachining fabrication process. The process allows maximization of both the thermal isolation and the optical fill-factor. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution (IFOV) requirement, the 25 micrometers pixels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased. The pixel size reduction has enabled the development of a large-format 640x480 FPA array. Raytheon has produced arrays with very good sensitivity, operability, and excellent image quality. These FPAs are applicable to wide-field-of-view, long range surveillance and targeting missions. Raytheon is also developing a high performance 160x128 FPA that is designed for applications where miniaturization and temperature invariance are required as well as low cost and low power.
The Low Cost Microsensors (LCMS) Program recently demonstrated state-of-the-art imagery in a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 X 480 format focal plane array (FPA) engine. The 640 X 480 sensor is applicable to long-range surveillance and targeting missions. The intent of this DUS&T effort is to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging.
Daniel Murphy, Michael Ray, Richard Wyles, James Asbrock, Nancy Lum, Adam Kennedy, Jessica Wyles, C. Hewitt, Glen Graham, Tad Horikiri, John Anderson, Daryl Bradley, Richard Chin, Thomas Kostrzewa
RIO has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon has produced high-quality 320 by 240 micro bolometer FPAs with 25 micrometers pitch pixels. The 320 by 240 FPAs have a sensitivity that is comparable to micro bolometer FPAs with 50 micrometers pixels. The average NETD value for these FPAs is about 35 mK with an f/1 aperture and operating at 30 Hz frame rates. Good pixel operability and excellent image quality have been demonstrated. Pixel operability is greater than 99 percent on some FPAs, and uncorrected responsivity nonuniformity is less than 4 percent. The micro bolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been achieved as a result of an advanced micromachining fabrication process. The process allows maximization of both the thermal isolation and the optical fill-factor. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution requirement, the 225 micrometers pixels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased. The pixel size reduction has enabled the development of a large-format 640 by 512 FPA array applicable to wide-field-of-view, long range surveillance and targeting missions, and a 160 by 128 array where applications for miniaturization and temperature invariance are required as well as low cost and low power.
Raytheon Infrared Operations (RIO) has achieved a significant technical breakthrough in uncooled FPAs by reducing the pixel size by a factor of two while maintaining state-of-the-art sensitivity. Raytheon has produced high-quality 320 X 240 microbolometer FPAs with 25 μm pitch pixels. The 320 X 240 FPAs have a sensitivity that is comparable to microbolometer FPAs with 50 micrometers pixels. The average NETD value for these FPAs is about 35 mK with an f/1 aperture and operating at 30 Hz frame rates. Good pixel operability and excellent image quality have been demonstrated. Pixel operability is greater than 99% on some FPAs, and uncorrected responsivity nonuniformity is less than 4% (sigma/mean). The microbolometer detectors also have a relatively fast thermal time constant of approximately 10 msec. This state-of-the-art performance has been achieved as a result of an advanced micromachining fabrication process. The process allows maximization of both the thermal isolation and the optical fill-factor. The reduction in pixel size offers several potential benefits for IR systems. For a given system resolution (IFOV) requirement, the 25 μm pixels allow a factor of two reduction in both the focal length and aperture size of the sensor optics. The pixel size reduction facilitates a significant FPA cost reduction since the number of die printed on a wafer can be increased. The pixel size reduction has enabled the development of a large-format 640 X 512 FPA array applicable to wide-field-of-view, long range surveillance and targeting missions, and a 160 X 128 array where applications for miniaturization and temperature invariance are required as well as low cost and low power.
The objectives of the Low Cost Microsensors (LCMS) Program are twofold. The first is to develop and deliver a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 X 512 format focal plane array (FPA) engine. The second is to develop an expendable microsensor built upon a VOx 160 X 128 format FPA engine. The 640 X 480 sensor is applicable to long-range surveillance and targeting missions and is a reusable asset. The 160 X 120 sensor is designed for applications where miniaturization is required as well as low cost and low power. The 160 X 120 is also intended for expendable military applications. The intent of this DUS&T effort is to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging.
The objectives of the Integrated Imaging Sensors (I2S) Program are rtwofold. The first is to develop and deliver a rifle sight containing a single aperture and optical path for receiving, combining, and viewing radiation from the separate infrared (IR) and visible bands in a single image simultaneously. The second is to develop a sensor array sensitive in the radiation band spanning approximately from 0.4 μm to 1.7 μm by "fusing" indium-gallium-arsenic material onto silicon charge coupled devices. The ability to coincidentally and simultaneously form images from these two separate radiation bands is expected to significantly improve the detection and identification of objects from the case where only one radiation band is employed. Additionally, extending the cutoff of the visible band from 0.9 μm to 1.7 μm is expected to enhance viewing in this band as there is more available light, and further lessons the exacting requirement of desigining nearly noise free detectors.
The objectives of the Low Cost Microsensors Program are twofold. The first is to develop and deliver a long-range infrared (IR) sensor built upon an uncooled vanadium oxide (VOx) 640 X 480 format focal plane array (FPA) engine. The second is to develop an expendable microsensor built upon a VOx 160 X 120 format FPA engine. The 640 X 480 sensor is applicable to long-range surveillance and targeting missions and is a reusable asset. The 160 X 120 sensor is designed for applications where miniaturization is required as well as low cost and low power. The 160 X 120 is also intended for expendable military applications. The intent of this DUS&T effort is to further reduce the cost, weight, and power of uncooled IR sensors, and to increase the capability of these sensors, thereby expanding their applicability to military and commercial markets never before addressed by thermal imaging.
A diffractive optical element (DOE) can correct chromatic aberration in refractive optical systems with spectral bands in the visible, mid-wavelength, and long-wavelength infrared. A DOE simplifies the optical design, improves the image quality, and lowers the cost and weight by reducing the number of lens elements and desensitizing the alignment tolerances.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.