This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Two of these channels are high resolution imagers (HRI) at respectively 17.1 nm (HRI-EUV) and 121.6 nm (HRI-Ly∝), each one composed of two off-axis aspherical mirrors. The third channel is a full sun imager (FSI) composed of one single off-axis aspherical mirror and working at 17.1 nm and 30.4 nm alternatively. This paper presents the optical alignment of each telescope.
The alignment process involved a set of Optical Ground Support Equipment (OGSE) such as theodolites, laser tracker, visible-light interferometer as well as a 3D Coordinates Measuring Machine (CMM).
The mirrors orientation have been measured with respect to reference alignment cubes using theodolites. Their positions with respect to reference pins on the instrument optical bench have been measured using the 3D CMM. The mirrors orientations and positions have been adjusted by shimming of the mirrors mount during the alignment process.
After this mechanical alignment, the quality of the wavefront has been checked by interferometric measurements, in an iterative process with the orientation and position adjustment to achieve the required image quality.
The HRI channel is based on a compact two mirrors off-axis design. The spectral selection is obtained by a multilayer coating deposited on the mirrors and by redundant Aluminum filters rejecting the visible and infrared light. The detector is a 2k x 2k array back-thinned silicon CMOS-APS with 10 μm pixel pitch, sensitive in the EUV wavelength range.
Due to the instrument compactness and the constraints on the optical design, the channel performance is very sensitive to the manufacturing, alignments and settling errors. A trade-off between two optical layouts was therefore performed to select the final optical design and to improve the mirror mounts. The effect of diffraction by the filter mesh support and by the mirror diffusion has been included in the overall error budget. Manufacturing of mirror and mounts has started and will result in thermo-mechanical validation on the EUI instrument structural and thermal model (STM).
Because of the limited channel entrance aperture and consequently the low input flux, the channel performance also relies on the detector EUV sensitivity, readout noise and dynamic range. Based on the characterization of a CMOS-APS back-side detector prototype, showing promising results, the EUI detector has been specified and is under development. These detectors will undergo a qualification program before being tested and integrated on the EUI instrument.
The solar corona will be observed thanks to the presence on the first satellite, facing the Sun, of an external occulter producing an artificial eclipse of the Sun disk. The second satellite will carry on the coronagraph telescope and the digital camera system in order to perform imaging of the inner part of the corona in visible polarized light, from 1.08 R⦿ up to about 3 R⦿.
One of the main metrological subsystems used to control and to maintain the relative (i.e. between the two satellites) and absolute (i.e. with respect to the Sun) FF attitude is the Shadow Position Sensor (SPS) assembly. It is composed of eight micro arrays of silicon photomultipliers (SiPMs) able to measure with the required sensitivity and dynamic range the penumbral light intensity on the Coronagraph entrance pupil.
In the following of the present paper we describe the overall SPS subsystem and its readout electronics with respect to the capability to satisfy the mission requirements, from the light conversion process on board the silicon-based SPS devices up to the digital signal readout and sampling.
The X-IFU operates at temperatures below 100 mK and thus requires a sophisticated cryostat. In order to allow the beam focused by the telescope to reach the X-IFU detector, windows need to be opened on the cryostat thermal and structural shields surrounding the cold stage. X-ray transparent thermal blocking filters need to be mounted on such open windows to make the radiation heat-load onto the detector array negligible with respect to conduction heat load and dissipated electrical power, and to minimize photon shot noise onto the detector. After a brief survey of the heritage from space satellite and sounding rocket experiments on thermal filters operated at cryogenic temperatures, we present the selected baseline design of the thermal filters for the ATHENA X-IFU detector, show the performances, and finally discuss possible improvements in the design to increase the X-IFU quantum efficiency at low energies.
View contact details
No SPIE Account? Create one