Paper
6 May 2009 HgCdTe at Teledyne
Author Affiliations +
Abstract
Since the late '60's Teledyne Imaging Sensors (TIS-formerly Rockwell Science Center) has developed IR sensor technology and produced IR sensors for both military and commercial applications. In the late '70's, after excursions into the Pb-salts and InAsSb alloys, TIS began to study HgCdTe and has pursued this materials system aggressively ever since. Beginning with Te-corner liquid phase epitaxy (LPE) by dipping, tipping, and sliding, Teledyne migrated through metal organic chemical vapor deposition (MOCVD)-a very challenging growth technique-to molecular beam epitaxy (MBE), where we have found a reliable and flexible technique suited to the most advanced architectures. We used substrates from Cd(Zn)Te to sapphire, GaAs, and silicon. Ion implantation and planar diode architectures have allowed high density device geometries exploited in our double layer planar heterostructure (DLPH) single color diodes and our simultaneous multispectral integrated technology (SUMIT) two color diodes. The performance of these devices equals or exceeds that of all baseline MCT devices reported by other techniques. These devices have dark currents that are readily characterized over 13 orders of magnitude by a simple heuristic, "Rule 07," for a wide range of temperature and wavelength.
© (2009) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
W. E. Tennant, J. M. Arias, and J. Bajaj "HgCdTe at Teledyne", Proc. SPIE 7298, Infrared Technology and Applications XXXV, 72982V (6 May 2009); https://doi.org/10.1117/12.821350
Lens.org Logo
CITATIONS
Cited by 5 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Mercury cadmium telluride

Liquid phase epitaxy

Sensors

Diodes

Mid-IR

Doping

Metalorganic chemical vapor deposition

RELATED CONTENT


Back to Top