Paper
22 November 2000 Laser Doppler blood flowmetry multiple scattering study during reactive hyperaemia
Author Affiliations +
Abstract
The goal of the present work is to analyse multiple scattering in laser Doppler blood flowmetry reactive hyperaemia experiments. For this purpose, three different kinds of outputs from a laser Doppler flowmeter are studied: the concentration of moving blood cells (CMBC), the linearised unfiltered flux and the unlinerised unfiltered flux. Three vascular occlusion lengths of time are observed on eight healthy volunteers. For each reactive hyperaemia experiment, the difference between the linearised unfiltered flux and the unlinearised unfiltered flux is calculated to examine the multiple scattering. The latter is considered as a function of time and compared to blood flux and concentration of erthrocyte variations. This work shows that, during reactive hyperaemia, the multiple scattering is predominant when the CMBC signal reaches its peak, the latter occurring at the peak of perfusion. However, very rapidly the multiple scattering becomes negligible whereas the CMBC and the linearised flux still take high values. Moreover, the longer the occlusion length of time, the longer the presence of the multiple scattering.
© (2000) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Anne Humeau, Jean Louis Saumet, and Jean Pierre L'Huillier "Laser Doppler blood flowmetry multiple scattering study during reactive hyperaemia", Proc. SPIE 4163, Optical Techniques and Instrumentation for the Measurement of Blood Composition, Structure, and Dynamics, (22 November 2000); https://doi.org/10.1117/12.407640
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Doppler effect

Blood

Multiple scattering

Signal processing

Laser scattering

Photons

Filtering (signal processing)

Back to Top