The detector system for the Euclid Near-Infrared Spectrometer and Photometer (NISP) instrument is a 4×4 mosaic focal plane of 16 H2RG (2K×2K pixels) infrared Sensor Chip Assemblies (SCAs) and 16 SIDECAR ASIC Sensor Chip Electronics (SCE) modules. Teledyne has successfully completed the fabrication, testing, and delivery of 24 sciencegrade flight candidate SCAs to the NASA Jet Propulsion Laboratory (JPL). These SCAs were made with Teledyne’s TRL-9 substrate-removed MBE mercury cadmium telluride (HgCdTe) 2.3 μm cutoff detector material and low-noise H2RG CMOS readout chip. The SCAs are mounted on a buttable molybdenum package that enables close packing of the 16 flight SCAs in the NISP focal plane. In this paper, we present the test results of the 24 Euclid flight candidate SCAs. The key detector performance parameters that are critical to the NISP instrument are: high in-band quantum efficiency with good spatial uniformity, low readout noise, low dark current with tight distribution, low pixel crosstalk, low persistence, and good detector surface metrology profile. All 24 SCAs exceed the Euclid NISP performance and interface requirements. The additional acceptance testing at JPL and NASA Goddard’s Detector Characterization Lab has also been completed. 20 flight SCAs have been delivered to European Space Agency (ESA).
Features of the flight hardware version of the NICMOS 256 X 256 mercury-cadmium- telluride (MCT) detector array for the Hubble Space Telescope (HST) are presented and described. Detector flowdown requirements for flight production are reviewed and discussed. Detector cross section and array architecture features are analyzed in relation to quantum efficiency and crosstalk behavior. Features of the charge integration scheme employed are analyzed in assessing dynamic range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.