We present a novel method of stabilizing a distributed-feedback laser. It’s the first time to our knowledge that the timemeasurement technique is used in laser frequency stabilization. We obtain the laser frequency deviation information from the Fabry-Perot interferometer based on the pulse delay time. In contrast to traditional approaches, the laser can be stabilized in the quasi-continuous spectrum that the interferometer covering. Our method can obtain the error signal from a high signal to noise ratio (SNR) of the voltage signal and not limited by the frequency references. It also avoids many traditional problems, such as power insensitive, modulation, low-level signal, and finite frequency references. A relative frequency fluctuation less than 0.1 MHz is achieved and the root of an Allan variance is about 10-11 for an average time of 10 s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.