We discuss the design and development of a slow-light spectrometer on a chip with the particular example of an
arrayed waveguide grating based spectrometer. We investigate designs for slow-light elements based on photonic
crystal waveguides and grating structures. The designs will be fabricated using electron-beam lithography and UV
photolithography on a silicon-on-insulator platform. We optimize the geometry of these structures by numerical
simulations to achieve a uniform and large group index over the largest possible wavelength range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.