Compared with the single-method guidance technology, the composite guidance technology has outstanding performance in anti-stealth, anti-jamming and accurate target identification, which can effectively enhance the perception and penetration ability of aerial guided bombs, and has great military value and potential economic value. Therefore, the application of composite guidance technology in aeronautical guided bombs are reviewed in this paper. Firstly, the definition of composite guidance technology based on aerial bombs are introduced, and the common single-method guidance technology and composite guidance technology applied to aerial guided bombs are listed. Secondly, the development status of guided aerial bombs using composite guidance technology in foreign countries are described, and three important technologies of composite guidance technology in aerial guided bombs are discussed, including high-precision technology, anti-jamming technology and simulation technology of composite guidance. Finally, the development trend of this technology is summarized.
In this paper, a broadband microwave photonic channelized receiver based on optical frequency comb (OFC) injection locking technology is illustrated. The simulation results show that, with more than 80 comb lines generated from OFC, this receiver enables channelized scanning and reception of broadband signal up to 40 GHz with instantaneous bandwidth of 1 GHz. Meanwhile, the channels selected using optical injection locking (OIL) technology, perform high gain and low phase noise with suppression ratio between the selected comb line and other comb lines is 28.7 dB. Due to OIL technology, the wideband tunability of this receiver would not depend on the optical filter or demultiplexer, and the band limitation and operation resolution introduced by optical components are broken through. The OIL technology also lead to the architecture of receiver more compact and feasible in practical.
Signal to noise ratio (SNR) is one of the key parameters in the communication, radar and spectrum perception systems. In this paper, we propose and demonstrate a SNR enhancement receiver with wide processing bandwidth and tunability, where two coherent optical frequency combs (OFCs) based on multi-channel microwave source and electro-optic modulators are incorporated to accomplish simultaneous frequency down-conversion and channelization. By exploiting a dual frequency microwave source as a comb driver, the FSR tunable OFC is demonstrated. The FSR of the laser can be tuned flexibly from 8 GHz to 12 GHz by controlling the controlling the frequency of the microwave source. Multifrequency microwave signal is generated from a 0-10GHz microwave signal source and cloned to the optical domain by a carrier suppressed single sideband modulator (CS-SS) and then down-converted and channelized to the same IF. The IF signals are digitalized and then added in the digital domain. With the proposed receiver a 7.2 dB SNR enhancement has been achieved.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.