The Earth 2.0 (ET) space mission has entered its phase B study in China. It seeks to understand how frequently habitable Earth-like planets orbit solar-type stars (Earth 2.0s), the formation and evolution of terrestrial-like planets, and the origin of free-floating planets. The final design of ET includes six 28 cm diameter transit telescope systems, each with a field of view of 550 square degrees, and one 35 cm diameter microlensing telescope with a field of view of 4 square degrees. In transit mode, ET will continuously monitor over 2 million FGKM dwarfs in the original Kepler field and its neighboring fields for four years. Simultaneously, in microlensing mode, it will observe over 30 million I < 20.5 stars in the Galactic bulge direction. Simulations indicate that ET mission could identify approximately 40,000 new planets, including about 4,000 terrestrial-like planets across a wide range of orbital periods and in the interstellar space, ~1000 microlensing planets, ~10 Earth 2.0s and around 25 free-floating Earth mass planets. Coordinated observations with ground-based KMTNet telescopes will enable the measurement of masses for ~300 microlensing planets, helping determine the mass distribution functions of free-floating planets and cold planets. ET will operate from the Earth-Sun L2 halo orbit with a designed lifetime exceeding 4 years. The phase B study involves detailed design and engineering development of the transit and microlensing telescopes. Updates on this mission study are reported.
A space mission called “Earth 2.0 (ET)” is being developed in China to address a few of fundamental questions in the exoplanet field: How frequently habitable Earth-like planets orbit solar type stars (Earth 2.0s)? How do terrestrial planets form and evolve? Where did floating planets come from? ET consists of six 30 cm diameter transit telescope systems with each field of view of 500 square degrees and one 35 cm diameter microlensing telescope with a field of view of 4 square degrees. The ET transit mode will monitor ~1.2M FGKM dwarfs in the original Kepler field and its neighboring fields continuously for four years while the microlensing mode monitors over 30M I< 20.6 stars in the Galactic bulge direction. ET will merge its photometry data with that from Kepler to increase the time baseline to 8 years. This enhances the transit signal-to-noise ratio, reduce false positives, and greatly increases the chance to discover Earth 2.0s. Simulations show that ET transit telescopes will be able to identify ~17 Earth 2.0s, about 4,900 Earth-sized terrestrial planets and about 29,000 new planets. In addition, ET will detect about 2,000 transit-timingvariation (TTV) planets and 700 of them will have mass and eccentricity measurements. The ET microlensing telescope will be able to identify over 1,000 microlensing planets. With simultaneous observations with the ground-based KMTNet telescopes, ET will be able to measure masses of over 300 microlensing planets and determine the mass distribution functions of free-floating planets and cold planets. ET will be operated at the Earth-Sun L2 orbit with a designed lifetime longer than 4 years.
The Earth 2.0 (ET) mission is a Chinese next-generation space mission aiming at detecting thousands of terrestrial-like planets, including habitable Earth-like planets orbiting solar type stars (i.e., Earth’s 2.0s), cold low-mass planets, and free-floating planets. The ET mission will use six 300 mm diameter wide field telescope arrays to continuously monitor 1.2 million FGKM dwarf stars in the original Kepler field and its adjacent regions for four consecutive years to search for new planets including Earth 2.0s using the transit technique. The six telescopes have the same configuration, point to the same sky area, and constitute the main scientific payload. Each telescope has an effective aperture of 300 mm with a very wide field of view (FOV) of 500 square degrees and a wavelength coverage of 450-900 nm. Each telescope is equipped with a focal plane mosaic camera. The mosaic camera is composed of 2×2, 9k×9k CMOS detectors with pixel size of 10μm. The optical design results in the diameter of the 90% encircled energy (EE90%) less than 40μm (or 4 pixels) over the entire FOV. About 20% vignetting at the edge of the FOV is introduced to provide good throughput for the entire FOV while keeping optics size and weight down to reduce manufacturing risk and scientific payload within the mass and volume limit. In this paper, we will present the optical design details, including influence analysis of various factors on image quality, e.g., glass material, detector flatness, manufacturing and assembly tolerances. In addition, we will describe temperature stability analysis of the telescope on image quality and photometry measurements.
The Earth 2.0 (ET) mission is a Chinese space mission designed to detect thousands of terrestrial-like planets, including habitable Earth-like planets orbiting solar type stars (i.e., Earth 2.0s), cold low-mass planets, and free-floating planets. Six 30cm telescopes are used for very high precision photometry measurements to detect transiting planets. In order to reach very high precision photometry, an intra-pixel response function (IPRF) of detectors needs to be measured for the ET design to keep image motions caused by spacecraft operation within an acceptable level. To characterize detectors, two setups have been developed in the lab to measure spot size of the characterization beam and subpixel sensitivity. Early characterization results are reported.
The Earth 2.0 (ET) mission is a Chinese next-generation space mission to detect thousands of Earth-sized terrestrial planets, including habitable Earth-like planets orbiting solar type stars (Earth 2.0s), cold low-mass planets, and freefloating planets. To meet the scientific goals, the ET spacecraft will carry six 30 cm diameter transit telescopes with each field of view of 500 square degrees, and one 35 cm diameter microlensing telescope with a field of view of 4 square degrees, monitor ~1.2M FGKM dwarfs in the original Kepler field and its neighboring fields continuously while monitoring over 30M stars in the Galactic bulge direction. The high precision transit observations require high photometry precision and pointing stability, which is the key drive for the ET spacecraft design. In this paper, details of the overall mission modeling and analysis will be presented. The spacecraft orbit, pointing strategy, stability requirements are presented, as well as the space-ground communication analysis. The ET spacecraft adopts an ultra-high photometry precision & high stable platform, largely inherited from other space science missions. The preliminary design of spacecraft which meets mission requirements is introduced, including the spacecraft overall configuration, observation modes, avionics architecture and development plan, which pays great attention to the pointing stability and huge volume science telemetry download.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.