The low-frequency noise behavior of nanoscaled fully-depleted silicon-on insulator (SOI) finFETs is investigated and the perspectives of the noise method as a non-destructive diagnostic tool are revealed. The analysis of the (1/f)γ McWhorter noise observed at zero back-gate voltage showed that the trap concentration Not appears to be lower in the case of devices with HfSiON/SiO2 gate dielectric with the uniaxial strain in the inversion channel while the implementation of the HfO2/SiO2 gate stack and the biaxial strain tend to increase the value of Not. The analysis of the back-gate-induced (BGI) and linear kink effect (LKE) Lorentzian noise observed when the back interface is biased in accumulation allowed to estimate the values proportional to equivalent capacitance Ceq. Their front-gate voltage dependencies appear to be different for the devices with HfSiON/SiO2 and HfO2/SiO2 gate dielectric. Also the values proportional to density of the electron-valence-band tunneling currents jEVB were found for the devices studied. The influence of the strain-inducing techniques and gate dielectric type on the values discussed is revealed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.