EMIR is the NIR multi-object imager and spectrograph for the GTC (Gran Telescopio Canarias). The instrument ADR
(Advanced Design Review) was held successfully in March 2006. During the AD phase, a number of mechanical
concepts were tested on development prototypes to ensure the feasibility of the PDR proposed designs. This presentation
contains an overview of the current mechanical status of the instrument, as well as the prototypes development. It
contains the prototype tests results of the collimator first lens barrel, the support trusses, the grisms wheel and the
demonstration programme for the cryogenic reconfigurable slit mechanism.
EMIR, currently entering into its fabrication and AIV phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the Instituto de Astrofisica de Canarias (IAC). EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in an time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multiobject, in the wavelength range 0.9 to 2.5 μm. It is equipped with two innovative subsystems: a robotic reconfigurable multislit mask and disperssive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. The development and fabrication of EMIR is funded by GRANTECAN and the Plan Nacional de Astronomia y Astrofisica (National Plan for Astronomy and Astrophysics, Spain).
EMIR is a NIR multiobject spectrograph with imaging capabilities to be used at the GTC. The first collimator lens in EMIR, made of Fused Silica, has an outer diameter of 490 mm, and a weight of 265 N, which make it one of the largest Fused Silica lenses ever mounted to work under cryogenic conditions. The results of the various tests being done at the IAC (with two different lens dummies) in order to validate a mounting design concept for this lens, are presented here. The radial support concept tested consists of three contact areas around the lens, one of which is a PTFE block, preloaded by coil springs and the other two are fixed supports made of Aluminum and PTFE, dimensioned in order to keep lens centered both at room temperature and under operation conditions.
We present the final global design and performances of EMIR, the NIR multi-object spectrograph of the GTC, as well as the plan for its early scientific exploitation. EMIR, currently in the middle of its final phase, will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish and French institutes led by the IAC. EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in an time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, which include imaging and spectroscopy, both long slit and multi-object, in the wavelength range 0.9 to 2.5 mm. It is equipped with two innovative subsystems: a robotic reconfigurable multi-slit mask and dispersive elements formed by the combination of high quality diffraction grating and conventional prisms, both at the heart of the instrument. The present status of development, expected performances, schedule and plans for scientific exploitation are described and discussed. This project is mostly funded by GRANTECAN and the Plan Nacional de Astronomia y Astrofisica (National Plan for Astronomy and Astrophysics, Spain).
This paper shows the different design concepts and techniques employed in the structural and thermal analysis of EMIR (Espectrografo Multiobjeto Infrarrojo), nowadays under development at the Instituto de Astrofisica de Canarias.
EMIR is the NIR multi-object imager and spectrograph for the GTC (Gran Telescopio Canarias). The instrument PDR phase was held successfully in March 2003, and we are at present in the middle of the ADR (Advanced Design Phase) during which a number of mechanical concepts will be tested on development prototypes to ensure the feasibility of the PDR proposed design. This presentation contains a technical description of the mechanical design of the instrument, as well as the prototypes development. The mechanical design is essentially built around the optical layout by providing an optical bench for mounting the optomechanics, the mechanisms and the detector, all this inside a custom-designed vacuum vessel and with the corresponding cooling system. One of its main design features is the use of a cryogenic reconfigurable slit mechanism to generate a multi-slit configuration, a long slit or an imaging aperture at the telescope focal plane. This feature will permit to maintain the instrument in operation conditions for a long time and take advantages in both a classically scheduled and a queued service observing schemes
EMIR is a NIR multiobject spectrograph with imaging capabilities to be used at the GTC. A general description of instrument performances, as well as the updated optical and mechanical layouts, can be found elsewhere on these proceedings (reference documents 4, 6 and 7). After the successful results of the Preliminary Design Review in March 2003, EMIR optical design is now complete. Some specific features of the optical components make it particularly difficult to mount them in the instrument. For example, the first collimator lens in EMIR is one of the largest Fused Silica lenses ever mounted to work under cryogenic conditions, and some other lenses in the system present features such as aspheric surfaces, tight centering tolerances etc. The analysis of the testing being done in order to validate three different lens mounting design concepts is presented here, as well as the detailed status of the lens mounting design solutions adopted.
In this contribution we review the overall features of EMIR, the NIR multiobject spectrograph of the GTC. EMIR is at present in the middle of the PD phase and will be one of the first common user instruments for the GTC, the 10 meter telescope under construction by GRANTECAN at the Roque de los Muchachos Observatory (Canary Islands, Spain). EMIR is being built by a Consortium of Spanish, French and British institutes led by the IAC. EMIR is designed to realize one of the central goals of 10m class telescopes, allowing observers to obtain spectra for large numbers of faint sources in an time-efficient manner. EMIR is primarily designed to be operated as a MOS in the K band, but offers a wide range of observing modes, including imaging and spectroscopy, both long slit and multiobject, in the wavelength range 0.9 to 2.5 μm. The present status of development, expected performances and schedule are described and discussed. This project is funded by GRANTECAN and the Plan Nacional de Astronomía y Astrofísica (National Plan for Astronomy and Astrophysics, Spain).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.