In oral cavity (OC) squamous cell cancer, the incidence of occult nodal metastases varies from 20% to 50% depending and tumor size and thickness. Besides clinical and histopathological factors, image-derived biomarkers may help estimate the probability of LN (lymph nodes) metastasis using a non-invasive approach to further stratify patients' need for neck dissection. We investigated the role of MR-based radiomics in predicting positive lymph nodes in OC patients, prior to surgery. We also investigated different supervised and unsupervised dimensionality reduction techniques, as well as different classifiers. Results showed that the combination of radiomics+clinical factors outperform radiomics and clinical predictors alone. Overall, a combination of supervised and supervised machine learning algorithms seems more suitable for better performances in radiomic studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.