The imaging search for exoplanets is mainly limited by quasi-static speckle noise that have lifetimes between milliseconds and hours. Attempts to remove this noise using post-processing by building a point spread function (PSF) model from diversity in time, wavelength, and so-forth are limited to a small improvement due to the evolution of the noise along these same axes. The Calibration 2 (CAL2) system, being built by an international team, is a National Research Council of Canada (NRC) funded facility-class focal plane wavefront sensor for the Gemini Planet Imager 2 (GPI2) upgrade. The project consists of a complete rebuild of the GPI calibration (CAL) system. Based on the self-coherent camera concept and the FAST focal plane mask, a fraction of the near-infrared (NIR) science bandpass is extracted using a new dichroic wheel to perform focal plane wavefront sensing, with the goal to do science while also improving the contrast for the GPI2 IFS, up to a factor of 100x on bright stars. The project is at the final design review stage, and construction is expected to start summer/fall 2024, with assembly late fall 2024, and shipping to the Gemini North observatory middle of 2025.
GIRMOS is an infrared multi-object adaptive object spectrograph with four channels and a simultaneous imaging system. The spectrographs and imager are housed within a single cryostat and the adaptive optics and object selection systems operate at ambient temperature in front of the cryostat. GIRMOS receives adaptive optics corrected light from the Gemini North Adaptive Optics (GNAO) System in either GLAO or LTAO mode. This paper provides an overview of the requirements and overall design of the imaging system including optical prototyping efforts undertaken to de-risk the design.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.