Modern microscopy in life sciences is ruled by development and exploration of new dyes and stains (probes for histochemical staining, quantum dots, fluorescent proteins etc.) on one side, and technological improvements and innovations for fluorescence microscopy-especially high resolution and optical sectioning microscopy-on the other side. Concerning the technical innovations, several ingenious inventions have been made available for confocal microscopy. First, the acousto optical tunable filter, which allows switching and dimming of laser lines. Second the spectral detector, employing mirror sliders in front of the detectors which allow continuous tuning of the spectral emission band detected by the sensor. Third, the most challenging task: a substitute to the classical beam splitter-the device which is restricting fluorescence microscopy most. This was solved by introduction of the acousto optical beam splitter. The very last device which is still lacking flexibility is the laser source, operating only at non-equidistant frequencies and requiring a set of quite different laser sources as gas lasers, solid state lasers or diode lasers. A new approach by supercontinuum light sources is presented and discussed, which significantly enhances flexibility and coverage of the excitation spectra of typical, rare and natural fluorochromes.
KEYWORDS: Confocal microscopy, Mirrors, Optical filters, Microscopes, Beam splitters, Sensors, Luminescence, Chemical elements, Tunable filters, Signal to noise ratio
Recent developement in confocal microscope systems allow to tune the spectral characteristics of those elements which separate excitation and emission. The new devices replace the classical filter-devices, which have been used in fluorescence microscopy for many years. Excitation filters have been replaced by acousto optical filters, which work as multichannel dimmer devices and allow fine tuning of excitation energy as well as tuning the excitation ratio of multiple excitations. Emission filters have been replaced by tunable multiband detectors, which allow tuning of emission band width for higher efficiency and better band separation. The multiband detector also allows spectral scanning modes. Dichroitic beam splitters have been replaced by acousto optical beam splitters (AOBS) giving significantly increased signal efficiency and allow fast switching of excitation modes without moving mechanical parts. All three devices together lead to much better primary images, either giving highly improved signal to noise ratio or much less photobleaching (which is identically with viability of life samples).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.