In the present contribution we introduce silver nanowires, a material with outstanding properties. When silver nanowires are coated on surfaces, they form a percolating network. The surface resistance of these coatings can be adapted to individual needs, by changing the amount of silver nanowires on the surface. The coating formulation is versatilely applicable on rigid and flexible, glass and plastic and even curved substrates. Silver nanowires can be processed using standard coating procedures.
Thereby the material properties of silver, such as excellent electrical conductivity and reflection of electromagnetic radiation, and the advantages of nanotechnology are combined: The resulting coatings are electrically conductive, show remarkable reflective properties to electromagnetic radiation in the infrared wavelength range and are transparent in the visible spectral range.
In this paper we will demonstrate the potential of silver nanowires as a reflective coating for electromagnetic radiation on the example of low-e coatings. Such low-e coatings can be used for e.g. windows, where a high reflection of incoming IRradiation is necessary to avoid rising of the interior’s temperature. The reflective properties of silver nanowire based lowe coatings can be individually adjusted by means of the maximum reflection performance within a specific wavelength interval. Furthermore, the reflection properties of silver nanowires show a wavelength dependent performance. Consequently, silver nanowires are a promising material for tailorable reflective coatings especially for electrical, optical and IR systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.