We investigated the temperature characteristics of a modularized semiconductor optical amplifier (SOA) utilizing InAs/AlGaAs quantum dot (QD) in the active layer operating at C-band (1.53μm–1.56μm). It has been reported by many literatures on physics that QDs are superior at energy efficiency and leads to less thermal energy generation. By changing the temperature of the Peltier element inside the module from 20℃ to 80℃, we measured the difference in the gain at each input power and injection current. The QD-SOA we measured was utilizing InAs QD in active layer and the laminated structure had 20 layers having 20nm of intermediate layers which refers to the width between QDs. When the input power was -50 dBm, we successfully confirmed more than 10 dB at the Peltier element temperature of 70℃ by injecting a current larger than 400 mA. In addition, we obtained a maximum gain of 20.68 dB at the center wavelength and a constant gain of approximately 15 dB at other Peltier element temperatures. It can be concluded from the output of the experiment that this QD-SOA can be put to use in optical communication in several situations where the temperature ranges between 20℃ to 80℃. This involves a new approach towards the application of QD amplifiers in the field of optical fiber communications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.