The capacity of the WDM system can be increased by increasing the useable optical bandwidth or using the available bandwidth more efficiently since bit. Ultra-wide-band WDM transmissions with high bit rates in the full-WDM-wavelength range from the O to U bands (1260-1675 nm) are also very attractive for achieving high-capacity WDM transmission at low cost. This paper represents the high-speed photodetectors with a 3-dB bandwidth of more than 50 GHz for full-wavelength-band WDM transmission systems at 40Gb/s and beyond. The photodetector is a back-illuminated lattice-mismatched InGaAs PIN photodiode that we designed and fabricated to operate with a 3-dB cut-off frequency to values above 40 GHz, in the full-WDM-wavelength range from the O to U bands, by applying a small junction diameter and reduced the thickness of the light-absorbing InGaAs layer with a lattice-mismatch of +0.2% to InP. For our photodiode modules, a 3-dB bandwidth as high as 65 GHz was achieved at a bias voltage of 3 V and the responsivities at wavelengths of 1310, 1552 and 1670 nm were 0.6, 0.65 and 0.55 A/W, respectively. 40Gb/s receivers and 10Gb/s PIN/TIA modules were described as applications of the FWB-PDs. The photodiode modules operating up to the bandwidth of 50GHz and above in the full-WDM-wavelength range can drive the development to 40Gb/s WDM transmission systems using RZ or NRZ format and the additional new channels in the U band.
Use of photons for in-situ measurements of various objects provides a number of benefits, such as precise real-time measurement with no effect on the measured objects. Our research aims to develop an in-situ measurement technology that uses the benefits of photons and is ideal for applications in production lines. We succeeded in developing a tunable laser beam source to obtain the spectral line width of 5 MHz and a continuous wavelength sweep bandwidth of 200 nm, thus achieving our initial target. We believe that these characteristics are sufficient for use in absorption spectroscopy measurement of gases. For a 2.5 - 2.7 micrometer- band quantum infrared photo detector, we achieved the initial target of D* equals 1 to 3 X 1011 cmHz1/2/W (at room temperature). For a 3 - 10 micrometer-band quantum infrared photo detector, we performed a study on designing an InAsP/InP multi-quantum well light-absorbing layer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.