Pushbroom hyperspectral imaging systems require relative motion with respect to the target for hyperspectral data acquisition by means of spatial scanning, which increases the equipment cost and limits the application scenarios. We address this by introducing a pushbroom system with an internal line-scanning unit consisting of a slit aperture mounted on a piezoelectric linear motor. Different slit positions have tilted incidence angles at the grating, resulting in shifts of diffraction patterns relative to the imaging sensor. We demonstrate a method to compensate this shift by using a rotating arm controlled by a stepper motor to reposition the camera based on slit position.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.