In lung cancer screening, estimation of future lung cancer risk is usually guided by demographics and smoking status. The role of constitutional profiles of human body, a.k.a. body habitus, is increasingly understood to be important, but has not been integrated into risk models. Chest low dose computed tomography (LDCT) is the standard imaging study in lung cancer screening, with the capability to discriminate differences in body composition and organ arrangement in the thorax. We hypothesize that the primary phenotypes identified using lung screening chest LDCT can form a representation of body habitus and add predictive power for lung cancer risk stratification. In this pilot study, we evaluated the feasibility of body habitus image-based phenotyping on a large lung screening LDCT dataset. A thoracic imaging manifold was estimated based on an intensity-based pairwise (dis)similarity metric for pairs of spatial normalized chest LDCT images. We applied the hierarchical clustering method on this manifold to identify the primary phenotypes. Body habitus features of each identified phenotype were evaluated and associated with future lung cancer risk using time-to-event analysis. We evaluated the method on the baseline LDCT scans of 1,200 male subjects sampled from National Lung Screening Trial. Five primary phenotypes were identified, which were associated with highly distinguishable clinical and body habitus features. Time-to-event analysis against future lung cancer incidences showed two of the five identified phenotypes were associated with elevated future lung cancer risks (HR=1.61, 95% CI = [1.08, 2.38], p=0.019; HR=1.67, 95% CI = [0.98, 2.86], p=0.057). These results indicated that it is feasible to capture the body habitus by image-base phenotyping using lung screening LDCT and the learned body habitus representation can potentially add value for future lung cancer risk stratification.
A major goal of lung cancer screening is to identify individuals with particular phenotypes that are associated with high risk of cancer. Identifying relevant phenotypes is complicated by the variation in body position and body composition. In the brain, standardized coordinate systems (e.g., atlases) have enabled separate consideration of local features from gross / global structure. To date, no analogous standard atlas has been presented to enable spatial mapping and harmonization in chest computational tomography (CT). In this paper, we propose a thoracic atlas built upon a large low dose CT database with no screening detected malignancy (age 46-79 years, mean 64.9 years). The application validity of the developed atlas is evaluated in terms of discriminative capability for different anatomic phenotypes, including body mass index (BMI), chronic obstructive pulmonary disease (COPD), and coronary artery calcification (CAC).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.