The conversion of light into chemical and mechanical energy mediates many important processes in nature, e.g. vision, photosynthesis and DNA photodamage. To understand the structure-function relationships regulating such processes one must strive to study them in their natural environment, i.e. in the liquid-phase. This presentation reports on the design of a novel Ultrafast Electron Diffraction instrument capable of resolving structural dynamics in liquid samples. The capabilities of this instrument are showcased in the study of water, where its structure was resolved up to the 3rd hydration shell with 0.6 Å spatial resolution, and dynamics were resolved with 200 fs resolution.
We present recent progress in understanding nonlinear phonon dynamics driven by intense THz field strengths using ultrafast x-ray diffraction. This technique allows us to characterize the motion of the atomic lattice inside the sample on a sub-cycle timescale while the driving field is still present. In the example of strontium titanate (SrTiO3) we observe harmonic generation and phonon upconversion when the fundamental soft mode is driven into the nonlinear regime by a single-cycle THz pulse.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.