Digital Beamforming has gained significant importance in radar applications in the past years. It helps improve radar performance while reducing mass and power. Improving these figures becomes even more important for space applications. The Space Exploration Synthetic Aperture Radar (SESAR) is a novel P-band (70 cm wavelength) radar instrument developed for planetary applications that will enable surface and near-subsurface measurements of Solar System planetary bodies. The radar will measure full polarimetry at meter-scale resolution, and perform beam steering through programmable digital beamforming architecture. The data obtained with SESAR will provide key information on buried ice and water signatures that can facilitate the design of future human and robotic exploration missions. In this paper we describe SESAR’s large antenna array, the sub-systems integration process, and the different environmental testing activities performed to the overall system in order to raise the Technology Readiness Level (TRL) for its future inclusion in a space-proven system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.