One of the most interesting problems in the illumination research community is the design of optics able to generate prescribed intensity patterns with extended input sources. Such optics would be ideally applied to the current generation of extended, high-brightness, high-CRI LEDs used in general illumination, allowing reduced size of luminaires and improved efficiency. But in 3D, for non-symmetric configurations, how to design optics for prescribed intensity using extended sources remains an open question. We present an alternative approach to this problem, for the case of extended Lambertian sources, in which the design strategy is based on the definition of selected “edge wavefronts” of an illumination system. The extended emitter is represented by input wavefronts originating from selected points belonging to its edge; the prescribed intensity pattern, instead, is put in relationship with specific output edge wavefronts. The optic is calculated by requiring that it transforms the input edge wavefronts exactly into the output ones. This wavefront-matching procedure can be achieved, for example, with the Simultaneous Multiple Surfaces method (SMS). We show examples of freeform optics calculated according to the above procedure, which create non-rotationally symmetric irradiance patterns out of extended sources. A fine tuning of the output design wavefronts allows accurate control over the uniformity and extension of the output patterns, as well as on the definition of cut-offs and intensity gradients.
The Freeform RXI collimator is a remarkable example of advanced nonimaging device designed with the 3D Simultaneous Multiple Surface (SMS) Method. In the original design, two (the front refracting surface and the back mirror) of the three optical surfaces of the RXI are calculated simultaneously and one (the cavity surrounding the source) is fixed by the designer. As a result, the RXI perfectly couples two input wavefronts (coming from the edges of the extended LED source) with two output wavefronts (defining the output beam). This allows for LED lamps able to produce controlled intensity distributions, which can and have been successfully applied to demanding applications like high- and low-beams for Automotive Lighting.
Nevertheless, current trends in this field are moving towards smaller headlamps with more shape constraints driven by car design. We present an improved version of the 3D RXI in which also the cavity surface is computed during the design, so that there are three freeform surfaces calculated simultaneously and an additional degree of freedom for controlling the light emission: now the RXI can perfectly couple three input wavefronts with three output wavefronts. The enhanced control over ray beams allows for improved light homogeneity and better pattern definition.
Today’s SSL illumination market shows a clear trend towards high flux packages with higher efficiency and higher CRI,
realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and
far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional
diffusers cannot be employed without enlarging the exit aperture and reducing brightness (so increasing étendue).
Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied.
A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its
interior and exterior sides was presented in 2012. When placed on top of an inhomogeneous multichip Lambertian LED,
this so-called Shell-Mixer creates a homogeneous (both spatially and angularly) virtual source, also Lambertian, where
the images of the chips merge. The virtual source is located at the same position with essentially the same size of the
original source. The diameter of this optics was 3 times that of the chip-array footprint.
In this work, we present a new version of the Shell-Mixer, based on the Edge Ray Principle, where neither the overall
shape of the cap nor the surfaces of the lenses are constrained to spheres or rotational Cartesian ovals. This new Shell-
Mixer is freeform, only twice as large as the original chip-array and equals the original model in terms of brightness,
color uniformity and efficiency.
Today’s SSL illumination market shows a clear trend to high flux packages with higher efficiency and higher CRI, realized by means of multiple color chips and phosphors. Such light sources require the optics to provide both near- and far-field color mixing. This design problem is particularly challenging for collimated luminaries, since traditional diffusers cannot be employed without enlarging the exit aperture and reducing brightness. Furthermore, diffusers compromise the light output ratio (efficiency) of the lamps to which they are applied. A solution, based on Köhler integration, consisting of a spherical cap comprising spherical microlenses on both its interior and exterior sides was presented in 2012. The diameter of this so-called Shell-Mixer was 3 times that of the chip array footprint. A new version of the Shell-Mixer, based on the Edge Ray Principle and conservation of etendue, where neither the outer shape of the cap nor the surfaces of the lenses are constrained to spheres or 2D Cartesian ovals will be shown in this work. The new shell is freeform, only twice as large as the original chip-array and equals the original model in terms of color uniformity, brightness and efficiency.
Transmission-type concentrator photovoltaic (CPV) systems are a potential candidate to achieve high efficiency and low cost solar energy. The use of optical elements in these systems creates reflection losses of incoming solar energy that account for about 8% to 12% depending on the optical design. In order to reduce these losses, we have nanostructured the air/optical-elements’ interfaces by using plasma etching methods on the Fresnel lens made of poly(methyl methacrylate) (PMMA) and the homogenizer made of glass. On flat PMMA and glass substrates, transmittance enhancement measurements are in agreement with relative Jsc gains. The field test results using a CPV module with all textured optical-elements’ interfaces achieved 8.0% and 4.3% relative Jsc and efficiency gains, respectively, demonstrating the potential of this approach to tackle the reflection losses.
KEYWORDS: Solar concentrators, Solar cells, Photovoltaics, Prototyping, Fresnel lenses, Homogenization, Solar energy, Optics manufacturing, Temperature metrology, Concentrated solar cells
The outdoor measurements of a single-cell concentrator PV module reaching a regressed 35.6% efficiency and a maximum peak efficiency of 36.0% (both corrected @Tcell=25ºC) are presented. This is the result of the joint effort by LPI and Solar Junction to demonstrate the potential of combining their respective state-of-the-art concentrator optics and solar cells. The LPI concentrator used is an FK, which is an advanced nonimaging concentrator using 4-channel Köhler homogenization, with a primary Fresnel lens and a refractive secondary made of glass. Solar Junction’s cell is a triplejunction solar cell with the A-SLAMTM architecture using dilute-nitrides.
High flux and high CRI may be achieved by combining different chips and/or phosphors. This, however, results in
inhomogeneous sources that, when combined with collimating optics, typically produce patterns with undesired artifacts.
These may be a combination of spatial, angular or color non-uniformities. In order to avoid these effects, there is a need
to mix the light source, both spatially and angularly. Diffusers can achieve this effect, but they also increase the etendue
(and reduce the brightness) of the resulting source, leading to optical systems of increased size and wider emission
angles.
The shell mixer is an optic comprised of many lenses on a shell covering the source. These lenses perform Kohler
integration to mix the emitted light, both spatially and angularly. Placing it on top of a multi-chip Lambertian light
source, the result is a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is
located in the same position with essentially the same size (so the average brightness is not increased). This virtual light
source can then be collimated using another optic, resulting in a homogeneous pattern without color separation.
Experimental measurements have shown optical efficiency of the shell of 94%, and highly homogeneous angular
intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
KEYWORDS: Solar concentrators, Prototyping, Electrical efficiency, Solar cells, Solar energy, Dispersion, Fresnel lenses, Temperature metrology, Sun, Optics manufacturing
Most cost-effective concentrated photovoltaics (CPV) systems are based on an optical train comprising two stages, the first being a Fresnel lens. Among them, the Fresnel-Köhler (FK) concentrator stands out owing to both performance and practical reasons. We describe the experimental measurements procedure for FK concentrator modules. This procedure includes three main types of measurements: electrical efficiency, acceptance angle, and irradiance uniformity at the solar cell plane. We have collected here the performance features of two different FK prototypes (ranging different f -numbers, concentration ratios, and cell sizes). The electrical efficiencies measured in both prototypes are high and fit well with the models, achieving values up to 32.7% (temperature corrected, and with no antireflective coating on SOE or POE surfaces) in the best case. The measured angular transmission curves show large acceptance angles, again perfectly matching the expected values [measured concentration acceptance product (CAP) values over 0.56]. The irradiance pattern on the cell (obtained with a digital camera) shows an almost perfectly uniform distribution, as predicted by raytrace simulations. All these excellent on-sun results confirm the FK concentrator as a potentially cost-effective solution for the CPV market.
In SSL general illumination, there is a clear trend to high flux packages with higher efficiency and higher CRI addressed with the use of multiple color chips and phosphors. However, such light sources require the optics provide color mixing, both in the near-field and far-field. This design problem is specially challenging for collimated luminaries, in which diffusers (which dramatically reduce the brightness) cannot be applied without enlarging the exit aperture too much. In this work we present first injection molded prototypes of a novel primary shell-shaped optics that have microlenses on both sides to provide Köhler integration. This shell is design so when it is placed on top of an inhomogeneous multichip Lambertian LED, creates a highly homogeneous virtual source (i.e, spatially and angularly mixed), also Lambertian, which is located in the same position with only small increment of the size (about 10-20%, so the average brightness is similar to the brightness of the source). This shell-mixer device is very versatile and permits now to use a lens or a reflector secondary optics to collimate the light as desired, without color separation effects. Experimental measurements have shown optical efficiency of the shell of 95%, and highly homogeneous angular intensity distribution of collimated beams, in good agreement with the ray-tracing simulations.
A new design for a photovoltaic concentrator, the most recent advance based on the Kohler concept, is presented. The
system is mirror-based, and with geometry that guaranties a maximum sunlight collection area (without shadows, like
those caused by secondary stages or receivers and heat-sinks in other mirror-based systems). Designed for a concentration of 1000x, this off axis system combines both good acceptance angle and good irradiance uniformity on the solar cell. The advanced performance features (concentration-acceptance products –CAP- about 0.73 and affordable peak and average irradiances) are achieved through the combination of four reflective folds combined
with four refractive surfaces, all of them free-form, performing Köhler integration 2. In Köhler devices, the irradiance uniformity is not achieved through additional optical stages (TIR prisms), thus no complex/expensive elements to manufacture are required. The rim angle and geometry are such that the secondary stage and receivers are hidden below the primary mirrors, so maximum collection is assured. The entire system was designed to allow loose assembly/alignment tolerances (through high acceptance angle) and to be manufactured using already well-developed methods for mass production, with high potential for low cost. The optical surfaces for Köhler integration, although with a quite different optical behavior, have approximately the same dimensions and can be manufactured with the same techniques as the more traditional secondary optical elements used for concentration (typically plastic injection molding or glass molding). This paper will show the main design features, along with realistic performance simulations considering all spectral characteristics of the elements involved.
Concentration Photovoltaics (CPV) is one of the most promising areas for competitive solar electricity production. This
promise relies upon the use of high-efficiency triple-junction solar cells (which already have proven efficiencies over
41%) and upon advanced optics designs, which allow for high concentration concurrent with high manufacturing
tolerances, both key elements for low cost mass production.
In this paper we will present the progress in the development of the most advanced CPV optical designs at present. These
are based on free-form optics using Köhler homogenization. The degree of freedom of using free-forms allows the
introduction of multiple functionalities in a few optical elements, which provide the required concentration with high
tolerance and excellent light homogenization.
Different families are presented. The first group uses a Fresnel lens as a primary optic (called the FK concentrator and
the F-RXI concentrator) and a second group using mirrors as primaries (the XR and the XXR). How they compare
among them and also with classical designs will be discussed. The FK is in the process of being brought to market and
has already experimentally proven module electrical (DC) efficiencies over 30% (equivalent to over 32% with correction
to Tcell=25ºC) with no AR coatings at a concentration of 625x with high tolerance angle (over ±1.2º).
The XR-Köhler concentrator1 is a design that has the possibility to work under high concentration, maintaining the high
acceptance angle and high irradiance uniformity on the solar cell. It is an on-axis free-form design that consists of a
reflective (X) and refractive (R) surface. For a geometrical concentration of about 800x the simulated results show an
acceptance angle of ±1.79deg with high irradiance uniformity on the solar cell. This article shows the design results of
the XR-Köhler and also a novel passive cooling system (LPI patented) that keeps the solar cell operation temperature
under 100°C at extreme conditions (wind speed = 0 m/s, module tilt angle = 45deg and Ta = 50°C). The results of using
the XR-Köhler device as a collimator when the light source has very high non-uniform luminance distribution, i.e.
multichip LEDs, are also here presented.
At module level (one single solar cell), the Fresnel-Köhler (FK) concentrator comprises a perfect irradiance uniformity
along with quite high concentration-acceptance angle product. At the same time, it maintains the efficiency/simplicity of
other Fresnel-based concentrators. In this work we will show the FK concentrator has loose manufacturing tolerances as
well. All these facts, along with the pill-box shape of its transmission curve, permit an enhanced performance of this
device, compared to its competitors, at array level, because the system is more insensitive to manufacturing errors, and
current mismatch is less likely to occur. Or the same performance can be achieved at a lower cost, exhausting the
tolerance budget by using inexpensive fabrication techniques. Depending on the concentrator, the actual power delivered
by an array might drop significantly with respect to the sum of the power delivered by single modules. Under certain
circumstances, the FK can reach a 1-10% electrical efficiency increase with regards to other concentrators sharing the
same technology.
The Boeing Company Phantom Works has
developed three different prototype photovoltaic
concentrator arrays since March 2007. Identified as
Prototype A, B and C, the experimentally proven technical
characteristics of each design are presented. The
concentrator designs utilize a 1 cm2 multi-junction solar
cell assembly in conjunction with SMS non-imaging optical
designs [1, 2] manufactured with low-cost mass-producible
technologies. Prototype A is an on-axis XR optical
concentrator with a 733x geometrical concentration
demonstrating a ± 1.73° acceptance angle and 23.7%
conversion efficiency. Prototype B is an off-axis free-form
XR optical concentrator with a 810x geometrical
concentration demonstrating a ± 1.32° acceptance angle
and 25.3% conversion efficiency. Prototype C is the most
recent off-axis free-form XR optical concentrator with a
801x geometrical concentration and a theoretical ±1.80°
acceptance angle demonstrating a conversion efficiency
greater than 27.0%. Prototype C is also the basis for the
Boeing Proof of Design (POD) module, demonstrating an
acceptance angle of ±1.48° and a conversion efficiency of
29.4% (as of May 8, 2009). Manufacturability has been
paramount during the design process, resulting in high
performance concentrating photovoltaic modules using
production quality components.
The Köhler illumination concept was originally invented to achieve uniform illumination in microscopy1. Köhler
integrators can also be formed by arrays of lenticulations that can be any combination of reflective and/or refractive
surfaces, organized in corresponding pairs. Arrays of integrating facets can be arranged not only on flat surfaces but on
rotationally symmetric and even freeform surfaces6. Currently flat lenslet arrays are widely applied as homogenizing
optics2 for lithography, machine vision illumination, and projection.
Adding Köhler facets onto already designed surfaces can improve the optical system performance, while respecting its
original function. In general, the optics output can be made somewhat independent of the source characteristics, although
at the expense of a slight ètendue dilution or efficiency losses.
This work revises the Köhler concept and its application to different kind of optics, ranging from photovoltaic
concentrators to automotive LED headlights. In the former, irradiance peaks on the solar cell can be avoided, while
preserving high aiming tolerance (acceptance) of the solar concentrator. In the latter, LEDs drawbacks like large source
image sizes, source misalignments, ill defined source edges, and low source radiance can be compensated.
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and
high acceptance angle that in the same time is compact and convenient for thermal and mechanical management [1].
This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR
concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces
(i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to
perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry
aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the
manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and
is one of the keys to get a cost competitive photovoltaic generator.
For the geometrical concentration of 1000x the simulation results show the acceptance angle of ±1.8 deg. The irradiance
distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum
values under the ones that the cell can accept.
The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing
Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
A novel photovoltaic concentrator is presented. The goal is to achieve high concentration design with high efficiency and
high acceptance angle that in the same time is compact and convenient for thermal and mechanical management.
This photovoltaic system is based on 1 cm2 multi-junction tandem solar cells and an XR concentrator. The XR
concentrator in this system is an SMS 3D design formed by one reflective (X) and one refractive (R) free-form surfaces
(i.e., without rotational or linear symmetry) and has been chosen for its excellent aspect ratio and for its ability to
perform near the thermodynamic limit. It is a mirror-lens device that has no shadowing elements and has square entry
aperture (the whole system aperture area is used for collecting light). This large acceptance angle relaxes the
manufacturing tolerances of all the optical and mechanical components of the system included the concentrator itself and
is one of the keys to get a cost competitive photovoltaic generator.
For the geometrical concentration of 1000x the simulation results show the acceptance angle of ±1.8 deg. The irradiance
distribution on the cell is achieved with ultra-short homogenizing prism, whose size is optimised to keep the maximum
values under the ones that the cell can accept.
The application of the XR optics to high-concentration is being developed in a consortium leaded by The Boeing
Company, which has been awarded a project by US DOE in the framework of the Solar America Initiative.
A new free-form XR Kohler concentrator is presented that combines high geometric concentration, high acceptance
angle and high irradiance uniformity on the solar cell. This is achieved by modifying the optical surfaces to produce
Kohler integration. Although the new optical surfaces (that is, the ones including Kohler integration) behave optically
quite different from the ones that do not integrate, but from the macroscopic point of view they are very similar to them.
This means that they can be manufactured with the same techniques (typically plastic injection molding or glass
molding) and that their production cost is the same i.e., with a high potential for low cost and high optical efficiency.
The present approach is completely new and allows keeping the acceptance angle at high values and the concentration
factor without increasing the number of optical elements. The simulated optical performance of a Kohler integrating
solar concentrator is presented. This concept is the first design combining non flat array of Kohler integrators with
concentration optics.
The performance of the XR solar concentrator, using a high efficiency multi-junction solar cell developed
recently by Spectrolab, is presented. The XR concentrator is an ultra-compact Nonimaging optical design
composed of a primary mirror and a secondary lens, which can perform close to the thermodynamic limit
of concentration (maximum acceptance angle for a given geometrical concentration). The expected
acceptance angle of the concentrator is about ±2 deg for a geometrical concentration of 800x (a Fresnel
lens and secondary system typically has ±0.6 deg of acceptance for 300x of geometrical concentration).
This concentrator is optimized to improve the irradiance distribution on the solar cell keeping it under the
maximum values the cell can accept.
The XR concentrator has high manufacturing tolerance to errors and can be produced using low cost
manufacturing techniques. The XR is designed with the Simultaneous Multiple Surface (SMS) design
method of Nonimaging Optics. Its application to high-concentration photovoltaics is now being
developed in a consortium led by The Boeing Company, which has recently been awarded a project by
the US DOE in the framework of the Solar America Initiative.
The performance of the XR solar concentrator, using a high efficiency multi-junction solar cell developed
recently by Spectrolab, is presented. The XR concentrator is an ultra-compact Nonimaging optical design
composed of a primary mirror and a secondary lens, which can perform close to the thermodynamic limit
of concentration (maximum acceptance angle for a given geometrical concentration). The expected
acceptance angle of the concentrator is about ±2 deg for a geometrical concentration of 800x (a Fresnel
lens and secondary system typically has ±0.6 deg of acceptance for 300x of geometrical concentration).
This concentrator is optimized to improve the irradiance distribution on the solar cell keeping it under the
maximum values the cell can accept.
The XR concentrator has high manufacturing tolerance to errors and can be produced using low cost
manufacturing techniques. The XR is designed with the Simultaneous Multiple Surface (SMS) design
method of Nonimaging Optics. Its application to high-concentration photovoltaics is now being
developed in a consortium led by The Boeing Company, which has recently been awarded a project by
the US DOE in the framework of the Solar America Initiative.
One of the most usual procedures to measure a concentrator optical efficiency is by direct comparison between the photocurrent generated by the compound concentrator/solar cell and photocurrent that single cell would generate under identical radiation conditions. Unfortunately, such procedure can give a good idea of the generator final performance, but can not indicate the real amount of radiation that will impinge over the cell.
This apparent contradiction is based on the fact that once the cell is coupled with the concentrator, rays incidence is not perpendicular, but highly oblique, with an angle that can reach 70o or even greater for high concentration devices. The antireflective coating of the cell does not perform well enough for the whole incidence angle and frequency ranges because low cost is other important requirement for the solar cells. In consequence, the generated photocurrent drops for large incidence angles. In our case, a 70% incidence angle could, in the worst case, mean a 34% loss on generated photocurrent.
With the aim of correcting such problem a special device has been designed in the framework of a EU funded project called HAMLET. The concept of the device is to substitute the concentrator receptor by a system formed by an optical collimator that would reduce concentration and incidence angle, and a characterized solar cell. The paper gives the results of this measuring procedure.
A new design method of free-form Kohler integrator array optics is presented. Only few solutions to the integrator design problem are known, which apply for specific and simple source and targets (for instance, flat integrator lenslet arrays when the source and target are squares located at infinity). The method presented here find more general solutions and the resulting optics is formed by two arrays of free-form optical surfaces (which can be either reflective of refractive). The contour curves of the array units are also obtained from the design.
Two types of Kholer integrators will be defined, depending if they integrate only along one direction across the source (one-directional integrators) or in the two directions (two-directional integrators).
This design method has been applied for an ultra-compact high efficiency LED low beam head lamp producing a legal pattern independently of the chip luminance variation and permitting LED position tolerances of ±200 microns. The ray tracing proves that the high gradient (0.32) and its vertical position in the pattern remain invariable when chip is moved.
A novel backlight concept suitable for LED's has been designed using the flow-line design method, which allows controlling both the illumination uniformity and light extraction without scattering the light. This contrasts with conventional LED backlight optical designs, which are based on the use of a light guide with Lambertian scattering features that break the guidance and extract the light. Since most of Lambertian scattered light is re-guided, the average ray path in conventional backlights is long and multiple bounces are needed, which may lead to low efficiency. On the other hand, the new design presented here is not only efficient but also provide a relatively high collimation of the output beam (an output beam within a 10 degrees half-angle cone, with total theoretical efficiency over 80% including Fresnel and absorption losses). Wider beams can be controlled by design or obtained by adding a holographic diffuser at the exit. The new design offers other very interesting practical features: it can be very thin, can be made transparent (which widens its applications, including front lighting), can mix the colors from several LED's or recover reflected polarization for LCD illumination.
The study of general microstructures in 2D geometry and rotational 3D microstructures is presented. The study is based on infinitesimal microstructures for some calculations and the macro-profile of the surface can be treated as a new type of optical surface with a certain deflection law, which will be different of the reflection law or the Snell law. In two dimensions, we discuss the propagation of wavefronts by general microstructured surfaces (which do not fulfill the Fermat principle) and the discontinuity of the eikonal function at the microstructure. Naturally, a classification of the microstructures is obtained (regular and anomalous) and the concept of 2D ideal microstructures is also introduced, as those that perfectly couple two macroscopic extended bundles in 2D geometry. In 3D, after classifying the rotational optical systems into point-spot and ring-spot types, the first-order properties of both regular and anomalous rotational microstructured surfaces are discussed. Finally, an application of anomalous rotational microstructured surfaces to the problem of mixing the light from three RGB LED chips is introduced.
The Simultaneous Multiple Surfaces design method (SMS), proprietary technology of Light Prescription Innovators (LPI), was developed in the early 1990's as a two dimensional method. The first embodiments had either linear or rotational symmetry and found applications in photovoltaic concentrators, illumination optics and optical communications. SMS designed devices perform close to the thermodynamic limit and are compact and simple; features that are especially beneficial in applications with today's high brightness LEDs. The method was extended to 3D "free form" geometries in 1999 that perfectly couple two incoming with two outgoing wavefronts. SMS 3D controls the light emitted by an extended light source much better than single free form surface designs, while reaching very high efficiencies. This has enabled the SMS method to be applied to automotive head lamps, one of the toughest lighting tasks in any application, where high efficiency and small size are required. This article will briefly review the characteristics of both the 2D and 3D methods and will present novel optical solutions that have been developed and manufactured to meet real world problems. These include various ultra compact LED collimators, solar concentrators and highly efficient LED low and high beam headlamp designs.
The simultaneous multiple surface (SMS) method in 3-D geometry is presented. Given two orthotomic input ray bundles and another two orthotomic output ray bundles, the method provides an optical system with two free-form surfaces that deflects the rays of the input bundles into the rays of the corresponding output bundles and vice versa. In nonimaging applications, the method enables controlling the light emitted by an extended light source much better than single free-form-surface designs, and also enables the optics contour to be shaped without efficiency losses. The method is also expected to find applications in imaging optics.
The Simultaneous Multiple Surface (SMS) method in 3D geometry is presented. Giving two orthotomic input ray bundles and other two orthotomic output ray bundles, the method provides an optical system with two free-form surfaces that deflects the rays of the input bundles into the rays of the corresponding output bundles and vice versa. In nonimaging applications, the method allows controlling the light emitted by an extended light source much better than single free-form surfaces designs, and also enables the optics contour to be shaped without efficiency losses. The method is expected to find also applications in imaging optics
In this work it is presented a new design of a TIR lens-mushrooms lens device developed with the Simultaneous Multiple Surfaces (SMS) method. In SMS nomenclature, it is named TIR-R. In contrast to previous TIR-mushroom designs, application of the SMS method to this configuration consists in the simultaneous design of both TIR (total internal reflection) and R (refraction) optical surfaces using extended ray-bundles and the edge-ray theorem. In this paper is presented a basic approach to do the design. In this basic approach, first it is considered the TIR lens as a microstructured surface with infinitesimal flat facets. Afterwards, it is generated a TIR lens with finite size facets from the already designed one. In an advanced approach could be considered the TIR lens with finite facet size and designed simultaneously each facet with a portion of the outer surface of the mushroom lens. With respect to others SMS high-gain devices (as the RXI), the TIR-R concentrator has the following advantages: is a mirror-less device, there is not shadowing elements, and the receiver/emitter element's placement is more favorable for encapsulation and electrical connection. As it is common in the SMS devices, the TIR-R concentrator achieves wide acceptance angle and high efficiency with a low aspect ratio (thickness to entry aperture diameter ratio). For example, a 1256X concentration device has a theoretical efficiency of 100 percent (without optical losses) with an acceptance angle of +/- 1.7 decgrees, and an aspect ratio of 0.34.
12 In this work we present a novel optical lens that can be designed to provide any specified angular sensitivity to a receiver, illuminating the sensitive area almost isotropically. This lens, which has been designed in the framework of nonimaging optics, consists in a single dielectric piece that encapsulates the receiver (as conventional epoxy packages of photodiodes), whose interface with air is an aspheric refractive surface. Several trial products have been manufactured with different angular sensitivities (linear response, cos-1(theta) and cos-2(theta) ). The experimental results have shown that the trial devices have the specified angular sensitivity with +/- 5% accuracy.
Advanced optical design methods using the keys of nonimaging optics lead to some ultra compact designs which combine the concentrating (or collimating) capabilities of conventional long focal length systems with a high collection efficiency. One of those designs is the so-called RXI. Its aspect ratio (thickness/aperture diameter) is less than 1/3. Used as a receiver, i.e. placing a photodiode at the proper position, it gets an irradiance concentration of the 95% of the theoretical thermodynamic limit (this means for example, a concentration of 1600 times with an acceptance angle of +/- 2.14 degrees). When used as an emitter (replacing the aforementioned photodiode by an LED, for instance), similar intensity gains may be obtained within an angle cone almost as wide as the 95% of the thermodynamic limit. In a real device these irradiance(and intensity)gains are reduced by the optical efficiency. This combination of high concentration factors, relatively wide angles, simplicity and compactness make the optical device almost unique. This work will show the results of the measurements done with several RXI prototypes of 40-mm aperture diameter, all of them made of PMMA (by injection process).
Two new static nonimaging designs for bifacial solar cells are presented. These concentrators have been obtained with the Simultaneous Multiple Surface design method of Nonimaging Optics. The main characteristics of these concentrators are: (1) high compactness, (2) linear symmetry (in order to be made by low cost extrusion), (3) performance close to the thermodynamic limit, and (4) a non-shading sizable gap between at least one of the cell edges and the optically active surfaces. This last feature is interesting because this gap can be used to allocate the interconnections between cells, with no additional optical losses. As an example of the results, one design for an acceptable angle of +/- 30 degrees gets a geometrical concentration of 5.5X, with an average thickness to entry aperture width ratio of 0.24. The 3D ray-tracing analysis of the concentrators is also presented.
The purpose of this work is to present the measurements of the main characteristics of a series of RXI concentrators developed: angular transmission, acceptable angle, optical efficiency, and optical concentration. The RXI concentrator has been designed with the Simultaneous Multiple Surfaces method developed by Minano et al. at the Instituto de Energia Solar--Universidad Politecnica de Madrid. The design characteristics are: geometric concentration 1256X, acceptance angle 1.8 degree(s).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.