X-ray ptychography is often implemented for nanoimaging at synchrotron radiation sources and extensions are being developed to make experiments faster. This work is on multi-beam ptychography with Fresnel zone plates that have a small lateral separation, enabling the imaging of an extended field of view without increasing exposure time. Sectional zone inversion is implemented for coding respective probes and up to three Fresnel zone plates are successfully used in parallel. The speed-up achieved, compared to single beam ptychography, is linear with the number of probes. The combination of versatility of the fabrication process for the Fresnel zone plates and performance enhancement by scanning in multi-beam mode makes this an optimal solution for studying samples fast and obtaining enlarged fields of view.
Scanning coherent X-ray microscopy (ptychography) has gained considerable interest during the last decade since the performance of this indirect imaging technique does not necessarily rely on the quality of the X-ray optics and, in principle, can achieve highest spatial resolution in X-ray imaging. The method can be easily extended to 3D by adding standard tomographic reconstruction schemes. However, the tomographic reconstruction is often applied in a subsequent step using a sequence of aligned ptychographic 2D projections. In this contribution, we outline current developments of a GPU-accelerated framework for direct 3D ptychography, coupling 2D ptychography and tomography. The program utilizes a custom GPU-accelerated framework for ptychography that offers three distinct ptychographic reconstruction algorithms. The tomographic reconstruction runs simultaneously and uses numerical routines of the ASTRA Toolbox. This parallel-computing approach results in a high performance increase considerably reducing the reconstruction time of 3D ptychographic datasets.
The X-ray scanning microscope PtyNAMi at beamline P06 of PETRA III at DESY in Hamburg, Germany, is designed for high-spatial-resolution 3D imaging with high sensitivity. Besides optimizing the coherent ux density on the sample and the precision mechanics of the scanner, special care has been taken to reduce background signals on the detector. The optical path behind the sample is evacuated up until the sensor of a four-megapixel detector that is placed into the vacuum. In this way, parasitic scattering from air and windows close to the detector is avoided. The instrument has been commissioned and is in user operation. The main commissioning results of the low-background detector system are presented. A signal-to-noise model for small object details is derived that includes incoherent background scattering.
In recent years, ptychography has revolutionized x-ray microscopy in that it is able to overcome the diffraction limit of x-ray optics, pushing the spatial resolution limit down to a few nanometers. However, due to the weak interaction of x rays with matter, the detection of small features inside a sample requires a high coherent fluence on the sample, a high degree of mechanical stability, and a low background signal from the x-ray microscope. The x-ray scanning microscope PtyNAMi at PETRA III is designed for high-spatial-resolution 3D imaging with high sensitivity. The design concept is presented with a special focus on real-time metrology of the sample position during tomographic scanning microscopy.
Due to the weak interaction of X-rays with matter and their small wavelength on the atomic scale, stringent requirements are put on X-ray optics manufacturing and metrology. As a result, these optics often suffer from aberrations. Until now, X-ray optics were mainly characterized by their focal spot size and efficiency. How- ever, both measures provide only insufficient information about optics quality. Here, we present a quantitative analysis of residual aberrations in current beryllium compound refractive lenses using ptychography followed by a determination of the wavefront error and subsequent Zernike polynomial decomposition. Known from visible light optics, we show that these measures can provide an adequate tool to determine and compare the quality of various X-ray optics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.