Electro-optical testing and characterization of the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Camera focal plane, consisting of 205 charge-coupled devices (CCDs) arranged into 21 stand-alone Raft Tower Modules (RTMs) and 4 Corner Raft Tower Modules (CRTMs), is currently being performed at the SLAC National Accelerator Laboratory. Testing of the camera sensors is performed using a set of custom-built optical projectors, designed to illuminate the full focal plane or specific regions of the focal plane with a series of light illumination patterns: the crosstalk projector, the flat illuminator projector, and the spot grid projector. In addition to measurements of crosstalk, linearity and full well, the ability to project realistically-sized sources, using the spot grid projector, makes possible unique measurements of instrumental signatures such as deferred charge distortions, astrometric shifts due to sensor effects, and the brighter-fatter effect, prior to camera first light. Here we present the optical projector designs and usage, the electro-optical measurements and how these results have been used in testing and improving the LSST Camera instrumental signature removal algorithms.
The Integration and Verification Testing and characterization of the expected performance of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 Gpixel focal plane mosaic of 189 CCDs. In this paper, we describe the verification testing program developed in parallel with the integration of the Camera, and the results from our performance characterization of the Camera. Our testing program includes electro-optical characterization and CCD height measurements of the focal plane, at several steps during integration, as well as a complete functional and characterization program for the finished focal plane. It also includes a suite of functional tests of the major Camera mechanisms: shutter, filter exchange system and thermal control. Finally, we expect to test the fully assembled Camera prior to its scheduled completion and delivery to the LSST observatory in early calendar 2021.
The Integration and Verification Testing of the Large Synoptic Survey Telescope (LSST) Camera is described. The LSST Camera will be the largest astronomical camera ever constructed, featuring a 3.2 giga-pixel focal plane mosaic of 189 CCDs with in-vacuum controllers and readout, dedicated guider and wavefront CCDs, a three element corrector with a 1.6-meter diameter initial optic, six optical filters covering wavelengths from 320 to 1000 nm with a novel filter exchange mechanism, and camera-control and data acquisition capable of digitizing each image in two seconds. In this paper, we describe the integration processes under way to assemble the Camera and the associated verification testing program. The Camera assembly proceeds along two parallel paths: one for the focal plane and cryostat and the other for the Camera structure itself. A range of verification tests will be performed interspersed with assembly to verify design requirements with a test-as-you-build methodology. Ultimately, the cryostat will be installed into the Camera structure as the two assembly paths merge, and a suite of final Camera system tests performed. The LSST Camera is scheduled for completion and delivery to the LSST observatory in 2020.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.