In this manuscript, a 3.53kW average output power all-fiber laser system at 1064nm with 3dB linewidth as narrow as 0.16nm and near single-mode beam quality (M2 ≈1.7) is demonstrated. There is no obvious stimulated Brillouin scattering, stimulated Raman scattering or amplified spontaneous emission observed. To the best of our knowledge, this is the highest output power of all-fiber laser system with narrow-linewidth and near single-mode beam quality ever reported.
The singular point of the dissipative soliton mode-locked fiber laser is demonstrated experimentally. Mode-locked pulses are severely disturbed under certain pump power. The peak-valley (P-V) of the output power reaches up to 26.5% under the pump power of 918mW. However, mode-locked fiber laser can operate stably under higher or lower pump power. A numerical model based on nonlinear Schrödinger equation (NLSE) is established. And the singular point of the mode-locked state is theoretically proved.
A high average-power all-fiber supercontinuum laser source is constructed. By integrating series techniques together, the output average power achieves 65W with the spectrum range covering two octaves from 540nm to 2200nm. To our knowledge, there has been never reported similar supercontinuum source with such high average power, broadband spectrum and picosecond pulse width.
The thermal problems of CPS and YDF were studied. And the thermal management technologies are developed separately to the problems. Experimental results showed that the thermal management technologies worked well.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.