In recent years, polymer fiber actuators obtained by twisting polymer fibers have attracted much attention. These actuators actuate due to the reversible axial thermal contraction and radial thermal expansion of untwisted fibers. In this study, thermal contraction of the two polyamides, PA6 and PA610, fibers were investigated. The fiber length of both fibers changed reversibly in response to temperature change, but there was no initial load dependence on the amount of contraction. These results indicate that this thermal contraction is not due to the entropic elasticity effect seen in rubber. In addition, the thermal contraction was larger for PA610, which has a larger thermal expansion coefficient in the amorphous state. This suggests that the thermal expansion of the amorphous state was converted by its fiber structure into expansion in the diameter direction and contraction in the fiber axial direction [Kimura et al., Sens. Actuators B Chem., 2021].
Fishing-line artificial muscles can exhibit various motions. Twisted Polymer Fiber (TPF) actuators, which are a class of fishing-line artificial muscle actuators, generate torsional motion by applying heat. In general, untwisted fiber contracts by heating. However, measuring the blocking thermal tensile force of a TPF, we have discovered that the tensile force decreased and fluctuated depending on the initial number of twists in the TPF. This suggests that a TPF expands depending on the initial number of twists. Furthermore, the tensile force does not decrease monotonically but fluctuates during heating.
A fishing-line artificial muscle actuator is typically tested under a constant weight load. This paper reports a new hysteresis phenomenon discovered by changing both load weight and temperature applied to a fishing-line artificial muscle actuator. Obviously the equilibrium position of an actuator changes by load weight. Interestingly, the equilibrium position also largely changes when the actuator is firstly heated and cooled just after exchanging the load weight. In this paper we call this phenomenon as temperature-dependent hysteresis. We have observed that the magnitude of the temperature-dependent hysteresis in the experiment reached the same level as the thermal contraction and was not negligible.
KEYWORDS: Actuators, Polymers, Artificial muscles, Polymeric actuators, System identification, Control systems, Annealing, Control systems design, Modeling
This paper focuses on the torsional motion of a torsional type fishing-line artificial muscle actuator, so to speak, Twisted Polymer Fiber (TPF) actuator. TPFs are expected as limited rotation motors or limited angle motors for mechatronic applications. Aiming to construct a gray-box model for TPF actuators, this paper derives the first-order transfer function as the model from the applied electrical power to the generated torque of an actuator. The relation from the temperature to the generated torsional torque is simply assumed as a linear function of which coefficient is the torsional rigidity. In the experiment, the validity of the obtained model is evaluated, and then the blocked torque of the TPF actuator is controlled.
Recently, artificial muscles made of fishing lines or sewing threads, namely twisted and coiled polymer actuators (TCPAs), have been proposed by Haines et al. A TCPA contracts by applying heat and returns to its initial length by cooling. A TCPA can be driven by voltage if the TCPA is plated by metal or if conductive wire such as nichrome is wound around it. Compared with the conventional electroactive polymers, advantages of TCPAs are low cost, simple structure, large actuation strain, and large force. However, a big disadvantage of TCPAs is slow response due to heat transfer. The problem becomes apparent during cooling, although the response of heating can be improved by feedback control. This paper proposes a control method of switching heating and cooling. In the proposed method, a TCPA is cooled by an electric cooling fan. When the TCPA is heating, the cooling fan is stopped. In a previous report, the response speed can be improved by keeping cooling fan always on; however, unnecessary energy consumption is required even during heating. In the proposed method, energy consumption during heating does not increase and the response speed can be improved using fan only during cooling. The proposed control law is as follows. Firstly, the desired control input is determined by PI-D control with respect to the length of the actuator. Then, the control inputs to the heater and to the cooling fan are switched according to the sign of the PI-D controller output. The effectiveness of the proposed control method is demonstrated by comparing the cases with and without the cooling fan in the experiments.
KEYWORDS: Actuators, Polymers, Artificial muscles, Polymeric actuators, Electroactive polymers, Control systems design, Control systems, Data modeling, Feedback control, Digital signal processing, Annealing
Recently, fishing line artificial muscle has been developed and is paid much attention due to the properties such as large contraction, light weight and extremely low cost. Typical fishing line artificial muscle is made from Nylon thread and made by just twisting the polymer. In this paper, because of the structure of the actuator, such actuators may be named as coiled polymer actuators (CPAs). In this paper, a CPA is fabricated from commercial Nylon fishing line and Ni-Cr alloy (Nichrome) wire is wound around it. The CPA contracts by the Joule heat generated by applied voltage to the Nichrome wire. For designing the control system, a simple model is proposed. According to the physical principle of the actuator, two first-order transfer functions are introduced to represent the actuator model. One is a system from the input power to the temperature and the other is a system from the temperature to the deformation. From the system identification result, it is shown that the dominant dynamics is the system from the input power to the temperature. Using the developed model, position control of the voltage-driven CPA is discussed. Firstly, the static nonlinearity from the voltage to the power is eliminated. Then, a 2-DOF PID controller which includes an inversion-based feed forward controller and a PID controller are designed. In order to demonstrate the proposed controller, experimental verification is shown.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.