In this work, we provide an overview of vision-based control for perching and grasping for Micro Aerial Vehicles. We investigate perching on at, inclined, or vertical surfaces as well as visual servoing techniques for quadrotors to enable autonomous perching by hanging from cylindrical structures using only a monocular camera and an appropriate gripper. The challenges of visual servoing are discussed, and we focus on the problems of relative pose estimation, control, and trajectory planning for maneuvering a robot with respect to an object of interest. Finally, we discuss future challenges to achieve fully autonomous perching and grasping in more realistic scenarios.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.