The move towards a more digital and contactless world will increase the demand for holographic optics as the core optic in a pair of glasses or car windshields. How will we do that? Find out in this talk from the CEO of Trulife Optics
There is recently an increasing interest in holographic techniques and holographic optical elements (HOEs) related to virtual reality and augmented reality applications which demand new laser technologies capable of delivering new wavelengths, higher output powers and in some cases improved control of these parameters. The choice of light sources for optical recording of holograms or production of HOEs for image displays is typically made between fixed RGB wavelengths from individual lasers (457 nm, 473 nm, 491 nm, 515 nm, 532 nm, 561 nm, 640 nm, 660 nm) or tunable laser systems covering broad wavelength ranges with a single source (450 nm – 650 nm, 510 nm – 750 nm) or a combination. Lasers for holographic applications need to have long coherence length (>10 m), excellent wavelength stability and accuracy as well as very good power stability. As new applications for holographic techniques and HOEs often require high volume manufacturing in industrial environments there is additionally a growing demand for laser sources with excellent long-term stability, reliability and long operational lifetimes. We discuss what performance specifications should be considered when looking at using high average power, single frequency (SF) or single longitudinal mode (SLM) lasers to produce holograms and HOEs, as well as describe some of the laser technologies that are capable of delivering these performance specifications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.