We present recent results on compact GaN based laser sources, primarily designed for cooling and trapping atoms and ions. We show various designs used for miniaturised, direct-generation laser sources in the UV-green part of the spectrum targeting multiple atomic species. We show results from a line narrowed 369nm ECDL for Yb+ cooling, a 397nm frequency stabilised source for Ca+ cooling and a 422nm butterfly packaged ECDL for Sr+ cooling.
Quantum based devices offer distinct advantages over conventional technology, such as improved sensitivity for sensing applications or enhanced accuracy for metrology. To utilize this potential, a number of technical requirements must be met, such as the cooling and trapping of neutral atoms for their use as quantum systems. We present our work on InGaN-based semiconductor cooling lasers for a variety of atomic species such as strontium, magnesium and ytterbium whos target wavelength was met by quantum-well composition engineering. Results on growth-epitaxy, facet coating as well as different configurations such as ECDL and MOPAs are presented, depending on the requirement of the application.
consumption and financial burden of the multiple light sources required for such systems. The AlGaInN material system allows for single transverse mode laser diodes to be fabricated with optical powers up to 100 mW over a wide range from ~380 nm up to ~530 nm. By tuning the indium content and thickness of the GaInN quantum well, we have developed a range of AlGaInN diode-lasers targeted to meet the wavelength and power requirements suitable for optical clocks and atom interferometry systems.
One of the major limiting factors in nitride laser diode development has been the lack of a suitable low defectivity and uniform GaN substrate. Recently, single crystal growth of large area, very low dislocation-density and uniform GaN substrates are grown using a combination of high temperature and high pressure enabling a range of AlGaInN laser technology to be developed. This direct light generation at the required wavelength is crucial to reduce complexity and size of the overall system, and to ensure a high wall-plug efficiency that is critical for space and mobile applications.
We will present our development of GaN based, low SWaP, frequency-stabilised external-cavity seed and tapered amplifiers to operate at 461nm for first stage strontium cooling. This includes growth of custom optimised GaN epitaxy for operation at 461 nm, a robust ECDL geometry, a novel tapered amplifier design and important work in characterising the optical performance and minimising surface reflectivity to identify suitable working parameters.
Systems with the ability to observe and manipulate individual quantum states have been brought to applications that include among others satellite-free navigation and high-precision gravimetric sensing. Fundamentally, the applicability of quantum technology is limited by the complexity and financial burden of light sources required for such systems. These sources need to feature high optical power combined with compromised beam quality and frequency-stabilized narrow-linewidths. These parameters directly influence the performance of the quantum technology measurement system.
Semiconductor devices are able to provide high brightness over broad spectral regions through band-gap engineering. InGaN-based laser sources can be engineered to operate from 380nm to 530 nm. This aligns well with the transitions of atomic species such as strontium, magnesium and ytterbium. However, a challenge remains to offer the narrow-linewidths (<1 MHz) and the high powers (>100 mW) required for many of these applications.
We will present our development of GaN based narrow-linewidth seed and tapered amplifiers to operate at 461nm for first stage strontium cooling. This includes growth of custom optimised GaN epitaxy for operation at 461 nm, a robust ECDL geometry, a novel tapered amplifier design and important work in characterising and minimising the surface reflectivity to identify suitable working parameters. A comprehensive characterization of the device will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.