Stochastic defects are a concern in the lithographic processes used for semiconductor manufacturing, particularly for advanced node extreme ultraviolet lithographic processes. Experimentally determining the defect probability for a lithographic process is extremely time-consuming, requiring expensive metrology equipment and generally limited to simple patterns. Defect probability simulations can be beneficial from time and cost perspective and furthermore should be extensible to more complex patterns. As such, being able to accurately predict the defect probability using lithography simulations would be a valuable complementary option. We show the results of a fast simulation-based methodology for predicting defect probabilities based on a continuum lithographic model calibrated to experimental data. The simulation based-results are compared to experimental microbridge defect probability data where we show a good correlation between the two.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.