Visual impairments limit a person’s ability to process information such as obstacles, environments, reading and especially multimedia content (e.g., photographs and videos). In this work, we present the design and operating mechanism of Braille PolyPad, a prototype 2D refreshable braille display featuring 4×10 braille cells, enabling the transformation of images to 2D braille information. The Braille Polypad is based on a miniature pump enabled pneumatic actuation of Braille pins. The encoder transformed the pattern information to a heating circuits to trigger the softening of a stiffness variable polymer, allowing for large pneumatic actuation in the softened pin area. The braille pattern can switch on and off in 0.5s each regardless of the number of braille cells and pins, with low operation voltage and low power consumption. The technical features in this work could enable low-cost, large-size matrix refreshable braille displays in compact form factor. Full development of the prototype device is still ongoing, including materials optimization, actuation uniformity, and improvement of user-friendly control interface.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.