A comprehensive theoretical investigation of a dual wavelength, cascade cavity bismuth-doped fiber (BDF) laser operating in the wavelength range of 1.7μm is presented. The fiber laser model is based on parameters extracted from experimental characterization of the BDF. The BDF serves as an active medium with optical gain in the wavelength region from 1.65μm to 1.8μm. The laser cavity is defined by a 90% mirror on one end of the BDF and two fiber Bragg gratings (FBG1 and FBG2) separated with the BDF on the other end of the laser cavity. One of the gratings FBG1 with the peak reflectivity 95% is centered at 1.725μm. The second one FBG2 with peak reflectivity of 90% is centered at 1.729μm. Both FBGs have a 3-dB bandwidth of ~0.5nm. It is shown that the cascade laser can operate at two 1.725μm and 1.729μm wavelengths with different powers depending on the parameters of the structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.