We have proposed and implemented a scheme for Spiral Phase Plate (SPP) with continuous surface fabrication on fiber tips. By combining Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) system and bitmap (BMP) format processing method, we fabricated a SPP with the topological charge of 1 on the fiber tip, and experimentally analyzed the diffraction and interference properties of the generated vortex beam. The experimental results were in good agreement with the simulation results, which indicated the SPP fabricated by this method had good optical properties and high reliability. This work could be valuable for fiber communication and information encryption.
Recently, ultrafast optical modulators (OMs) based on atomic transition-metal dichalcogenides (TMDs) film have been intensively explored. Benefited from their remarkable nonlinear saturable absorption properties, TMDs based OMs could be employed as critical devices for pulsed lasers systems to transit continuous wave into pulse trains in laser cavity. Herein, the few-layer TMDs films were grown by chemical vapor deposition (CVD) method in possession of uniform thickness, large areas and high crystal quality. Then two types TMDs based OMs were fabricated by integrating single TMDs film or van der waals heterostructures (VdWHs) on the target substrates. As for VdWHs based OMs, different few-layer TMDs films were vertically stacked in turns on the target substrates to form heterointerfaces, which has been demonstrated with ultrafast carrier relaxation time between neighbor layers recently and is favor for ultrafast pulse generation. In our experiments, the nonlinear optical properties of two types TMDs based OMs were systematically investigated by measuring their nonlinear saturable absorption curves and further compared by embedded them into same fiber laser systems. The results indicate that the VdWHs based OMs owns more excellent nonlinear optical properties (such as larger modulation depth, smaller saturable intensity) and offers a feasible strategy to engineer desired ultrafast photonics devices by modifying the structure of VdWHs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.