Cortical circuit reorganization induced by anodal transcranial direct current stimulation (tDCS) over the Broca’s area of the dominant language hemisphere in 13 healthy adults was quantified by functional near-infrared spectroscopy (fNIRS). Transient cortical reorganization patterns in steady-state functional connectivity (seed-based and graph theory analysis) and temporal functional connectivity (sliding window correlation analysis) were recorded before, during, and after applying high current tDCS (1 mA, 8 min). fNIRS connectivity mapping showed that tDCS induced significantly (p < 0.05) increased functional connectivity between Broca’s area and its neighboring cortical regions while it simultaneously decreased the connectivity to remote cortical regions. Furthermore, the anodal stimulation caused significant increases to the functional connectivity variability (FCV) of remote cortical regions related to language processing. In addition to the high current tDCS, low current tDCS (0.5 mA, 2 min 40 s) was also applied to test whether the transient effects of lower stimulation current could qualitatively predict cortical connectivity alterations induced by the higher currents. Interestingly, low current tDCS could qualitatively predict the increase in clustering coefficient and FCV but not the enhancement of local connectivity. Our findings indicate the possibility of combining future studies fNIRS with tDCS at lower currents to help guide therapeutic interventions.
KEYWORDS: Sensors, Control systems, Hemodynamics, Sensorimotor cortex, Brain, Near infrared spectroscopy, Functional magnetic resonance imaging, Signal to noise ratio, Cortical activation, Bandpass filters
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2±2.1 years old) with hemiplegic cerebral palsy was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger-tapping task and the resting-state functional connectivity were quantified before, immediately after, and 6 months after CIMT. These fNIRS-based metrics were used to help explain changes in clinical scores of manual performance obtained concurrently with imaging time points. Five age-matched healthy children (9.8±1.3 years old) were also imaged to provide comparative activation metrics for normal controls. Interestingly, the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted 6 months later. In contrast to this improved localized activation response, the laterality index and resting-state connectivity metrics that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed 6 months later. In addition, for the subjects measured in this work, there was either a trade-off between improving unimanual versus bimanual performance when sensorimotor activation patterns normalized after CIMT, or an improvement occurred in both unimanual and bimanual performance but at the cost of very abnormal plastic changes in sensorimotor activity.
KEYWORDS: Control systems, Sensors, Sensorimotor cortex, Neuroimaging, Functional magnetic resonance imaging, Signal to noise ratio, Brain, Near infrared spectroscopy, Hemodynamics, Magnetic resonance imaging
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2 ± 2.1 years old) with hemiplegic cerebral palsy (CP) was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger tapping task were quantified before, immediately after, and six months after CIMT. Five age-matched healthy children (9.8 ± 1.3 years old) were also imaged at the same time points to provide comparative activation metrics for normal controls. In children with CP the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted six months later. In contrast to this longer term improvement in localized activation response, the laterality index that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed six months later.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.