Managing patients with hydrocephalus and cerebrospinal fluid disorders requires repeated head imaging. In adults, this is typically done with computed tomography (CT) or less commonly magnetic resonance imaging (MRI). However, CT poses cumulative radiation risks and MRI is costly. Transcranial ultrasound is a radiation-free, relatively inexpensive, and optionally point-of-care alternative. The initial use of this modality has involved measuring gross brain ventricle size by manual annotation. In this work, we explore the use of deep learning to automate the segmentation of brain right ventricle from transcranial ultrasound images. We found that the vanilla U-Net architecture encountered difficulties in accurately identifying the right ventricle, which can be attributed to challenges such as limited resolution, artifacts, and noise inherent in ultrasound images. We further explore the use of coordinate convolution to augment the U-Net model, which allows us to take advantage of the established acquisition protocol. This enhancement yielded a statistically significant improvement in performance, as measured by the Dice similarity coefficient. This study presents, for the first time, the potential capabilities of deep learning in automating hydrocephalus assessment from ultrasound imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.