KEYWORDS: Data modeling, Line edge roughness, Denoising, Matrices, Scanning electron microscopy, Edge detection, Machine learning, Image processing, Detection and tracking algorithms, Algorithm development
In this paper we propose the implementation of a machine learning technique based on Hidden Markov Models (HMMs) to provide denoising of line edges and unbiased LER measurement. HMMs are widely used with great success in speech recognition and image processing for denoising and filtering noise. Here HMMs are used for similar purposes, working with the observed (noisy) edge data, acquired through SEM imaging and an edge detection algorithm in an effort to retrieve a parent edge signal that is statistically close to the real one.
The developed HMM method was trained with the assistance of synthesized rough edges, on a wide spectrum of predefined and controlled noise levels and roughness characteristics. This ensures the method adapts on a variety of LER parameters and noise levels. The edges were then used to validate its effectiveness in a broad range of line patterns. Our results so far specify the characteristics of the training data set which are required to make the method effective in the unbiased LER measurement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.