Optical manipulation and tomographic imaging play critical roles in biomedical applications, however, applying these technologies to hard-to-reach regions remains challenging. We introduce a series of innovative AI-driven methods designed to facilitate both high-fidelity light field control and image reconstruction through a multicore fiber-optic system. Our approach enables precise, controlled rotation of human cancer cells around all three axes, enabling 3D tomographic reconstructions of these cells with isotropic resolution. The integration of these advanced optical and computational techniques culminates in a powerful optical fiber probe, capable of sophisticated optical manipulation and tomographic imaging, offering new perspectives for optical manipulation and its applications.
Multiple beam generation and adaptive control plays an important role in the laser propagation applications. The existing approaches are usually mechanical, so they have many limitations in terms of accuracy, bandwidth, and flexibility. In this paper, a kind of dynamic multiple beam forming method based on the fiber laser phased array (FLPA) is proposed. In this method, the FLPA based on the multi-objective optimization algorithm is employed, which can theoretically generate any number of outgoing beams, and dynamically adjust the power of each beam. The numerical simulation experiments based on a 19-cell FLPA were conducted. The results show that two stable outgoing beams of FLPA can be generated after about 200 iterations, and the power distribution error of the two beams can reach less than 4%. In addition, the two beams can also be combined into one after about 50 iterations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.