The European Space Agency (ESA), in collaboration with the European Commission (EC) and EUMETSAT, is developing as part of the EC’s Copernicus programme, a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. The anthropogenic CO2 monitoring (CO2M) mission will be implemented as a constellation of identical Low Earth Orbit satellites, to be operated over a nominal period of more than 7 years. Each satellite will continuously measure CO2 concentration in terms of column-averaged dry air mole fraction (denoted XCO2) along the satellite track on the sun-illuminated part of the orbit, with a swath width of 250 km. Observations will be provided at a spatial resolution < 2 x 2 km2, with high precision (< 0.7 ppm) and accuracy (bias < 0.5 ppm), which are required to resolve the small atmospheric gradients in XCO2 originating from anthropogenic activities. The demanding requirements necessitate a payload composed of three instruments, which simultaneously perform co-located measurements: a push-broom imaging spectrometer in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) for retrieving XCO2 and in the Visible spectral range (VIS) for nitrogen dioxide (NO2), a Multi Angle Polarimeter (MAP) and a three-band Cloud Imager (CLIM). Following the kick-off Mid 2020, the industrial activities have now passed the Satellite PDR allowing to enter in phase C/D. The paper will provide an overview of the space segment development achieved during the phase B2, including the platform, the payload activities as well as the end-to-end simulator. The preliminary design of the instruments on board the CO2M mission, the progress of the critical technological activities and the first results of the development models will be highlighted.
Thales Alenia Space has been selected to design and provide the payloads of the European Copernicus CO2M mission, whose main aim is to provide monitoring of the anthropogenic carbon dioxide emissions from space. Each payload is composed of : • The CO2 instrument, which is the instrument dedicated to measuring atmospheric CO2 and CH4. This dispersive instrument measures the spectral radiance in three bands (747-773, 1590-1675 and 1990-2095nm), used as inputs to the inverse models for determining total column concentrations for atmospheric CO2 and CH4. The instrument is designed for high spatial resolution, high spectral resolution, and high thermal and mechanical stabilities. • The CO2 instrument embeds an imaging spectrometer in the VIS 405-490nm band dedicated to measuring atmospheric NO2 content, permitting native nominal co-registration and optimized relative radiometric performances with the CO2 bands. This translates into an accurate tracing of anthropogenic CO2 plumes from power plants and cities while limiting the additional hardware and qualification procedures • This combined CO2 and NO2 instrument is the core of the payload, and two additional instruments of limited mass and volumes are embarked: a multi-angle polarimeter dedicated to aerosols measurement (MAP) to better account for cloud and aerosols scattering effects, and a cloud imager (CLIM) with high spatial resolution to accurately filter the data for cloud-contaminated samples. This article presents the payload design and development status.
The European Space Agency (ESA), in collaboration with the European Commission (EC) and EUMETSAT, is developing as part of the EC’s Copernicus programme, a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. The anthropogenic CO2 monitoring (CO2M) mission will be implemented as a constellation of identical Low Earth Orbit satellites, to be operated over a period of more than 7 years. Each satellite will continuously measure CO2 concentration in terms of column-averaged dry air mole fraction (denoted XCO2) along the satellite track on the sun-illuminated part of the orbit, with a swath width of 250 km. Observations will be provided at a spatial resolution < 4 km2 , with high precision (< 0.7 ppm) and accuracy (bias < 0.5 ppm), which are required to resolve the small atmospheric gradients in XCO2 originating from anthropogenic activities. The demanding requirements necessitate a payload composed of three instruments, which simultaneously perform co-located measurements: a push-broom imaging spectrometer in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) for retrieving XCO2 and in the Visible spectral range (VIS) for nitrogen dioxide (NO2), a Multi Angle Polarimeter (MAP) and a three-band Cloud Imager (CLIM). Following the kick-off Mid 2020, the industrial activities have now passed the Satellite PDR allowing to enter the phase C/D. The paper summarises the payload activities performed during the phase B2 culminating with the PDR of the instruments and of the payload. The preliminary design of the CO2M mission’s instruments, the progress of the technological activities and the first results of the development models are presented.
The European Space Agency (ESA), in collaboration with the European Commission (EC) and
EUMETSAT, is developing as part of the EC’s Copernicus programme, a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. The anthropogenic CO2 monitoring (CO2M) mission will be implemented as a constellation of identical LEO satellites, to be operated over a period > 7 years and measuring CO2 concentration in terms of column-averaged dry air mole fraction (denoted as XCO2). Industrial activities for the phase B2CD have been kicked-off Mid 2020.
The demanding requirements necessitate a payload composed of a suite of instruments,
which simultaneously perform co-located measurements. A push-broom imaging spectrometer will perform co-located measurements of top-of-atmosphere radiances in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) at high to moderate spectral resolution (NIR: 747- 773nm @0.1nm, SWIR-1: 1595-1675nm @0.3nm, SWIR-2: 1990-2095nm @0.35nm) for retrieving XCO2. These observations are complemented in the same spectrometer by measurements in the visible spectral range (405-490 nm @0.6nm), providing vertical column measurements of nitrogen dioxide (NO2) that serve as a tracer to high temperature combustion of fossil-fuel and related emission plumes (e.g. from coal-fired power plants and cities). High quality retrievals of XCO2 will be ensured even in situations of large aerosol loading, thanks to co-located measurements of aerosol resulting from a Multiple- Angle Polarimeter (MAP). Polarimetric measurements are performed over 40 angular views and in six spectral channels between 410 and 865 nm. Finally, due to the strong sensitivity of the XCO2 retrieval to cloud contamination, a three-band Cloud Imager (CLIM) will provide the required capacity to detect small tropospheric clouds and cirrus cover with an accuracy of 1% to 5% and a sampling better than 400 m.
The European Space Agency (ESA), in collaboration with the European Commission (EC) and EUMETSAT, is developing a space-borne observing system for quantification of anthropogenic carbon dioxide (CO2) emissions. Forming part of the EC's Copernicus programme, the CO2 monitoring (CO2M) mission will be implemented as a constellation of identical satellites, to be operated over a period > 7 years and measuring CO2 concentration in terms of column-averaged mole fraction (denoted as XCO2). Each satellite will continuously image XCO2 along the satellite track on the sun-illuminated part of the orbit, with a swath width of >250 km. Observations will be provided at a spatial resolution < 2 x 2 km2 near the swath center, with high precision (<0.7 ppm) and accuracy (bias <0.5 ppm). To this end, the payload comprises a suite of instruments addressing the various aspects of the challenging observation requirements: A push-broom imaging spectrometer will perform co-located measurements of top-of-atmosphere radiances in the Near Infrared (NIR) and Short-Wave Infrared (SWIR) at high to moderate spectral resolution (NIR: 747-773nm@0.1nm, SWIR-1: 1595-1675nm@0.3nm, SWIR-2: 1990-2095nm@0.35nm). These observations are complemented by measurements in the visible spectral range (405-490 nm@0.6nm), providing vertical column measurements of nitrogen dioxide (NO2) that serve as a tracer to assist the detection of fossil-fuel emission plumes (e.g. from coal-fired power plants and cities). High quality retrievals of XCO2 will be ensured even over polluted industrial regions, thanks to co-located measurements of aerosols performed by a Multiple-Angle Polarimeter (MAP). Finally, measurements of a three-band Cloud Imager, co-registered with the CO2 observations, will provide the required cloud-flagging capacity at sub-sample level (<200m resolution).
The presentation will review the results of the Phase A/B1 instrument studies carried out in 2018-2019, including technology pre-development activities, and highlight the identified engineering challenges. The preliminary design of the CO2M mission’s instruments at the beginning of the implementation phase will be presented, along with an outlook on the development activities under the Phase B2CD programme.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.