SignificanceCerebral oximeters have the potential to detect abnormal cerebral blood oxygenation to allow for early intervention. However, current commercial systems have two major limitations: (1) spatial coverage of only the frontal region, assuming that surgery-related hemodynamic effects are global and (2) susceptibility to extracerebral signal contamination inherent to continuous-wave near-infrared spectroscopy (NIRS).AimThis work aimed to assess the feasibility of a high-density, time-resolved (tr) NIRS device (Kernel Flow) to monitor regional oxygenation changes across the cerebral cortex during surgery.ApproachThe Flow system was assessed using two protocols. First, digital carotid compression was applied to healthy volunteers to cause a rapid oxygenation decrease across the ipsilateral hemisphere without affecting the contralateral side. Next, the system was used on patients undergoing shoulder surgery to provide continuous monitoring of cerebral oxygenation. In both protocols, the improved depth sensitivity of trNIRS was investigated by applying moment analysis. A dynamic wavelet filtering approach was also developed to remove observed temperature-induced signal drifts.ResultsIn the first protocol (28±5 years; five females, five males), hair significantly impacted regional sensitivity; however, the enhanced depth sensitivity of trNIRS was able to separate brain and scalp responses in the frontal region. Regional sensitivity was improved in the clinical study given the age-related reduction in hair density of the patients (65±15 years; 14 females, 13 males). In five patients who received phenylephrine to treat hypotension, different scalp and brain oxygenation responses were apparent, although no regional differences were observed.ConclusionsThe Kernel Flow has promise as an intraoperative neuromonitoring device. Although regional sensitivity was affected by hair color and density, enhanced depth sensitivity of trNIRS was able to resolve differences in scalp and brain oxygenation responses in both protocols.
Neuromonitoring during cardiac surgery helps prevent brain injury by detecting evidence of cerebral ischemia. Current neuromonitoring devices, such as cerebral oximeters, generally monitor one brain region, which prevents the detection of blood flow impairment in other vascular territories. A potential solution is to use a device with full-head coverage such as the newly developed high-density time-resolved NIRS system, Kernel Flow. This work aimed to assess Kernel Flow’s sensitivity to regional cerebral oxygenation changes using momentary carotid compression (CC), a paradigm that causes substantial decreases in cerebral blood flow and oxyhemoglobin (HbO) throughout the ipsilateral hemisphere. Five healthy volunteers were imaged using a Kernel Flow headset during a 30-s CC. To assess the sensitivity of the device to regional changes, the number of good quality channels was compared between four brain regions: frontal, somatosensory, temporal, and occipital. HbO and deoxyhemoglobin (HbR) time series in the ipsilateral and contralateral hemispheres were analyzed. Overall, the frontal region had the largest amount of good-quality channels, and the ipsilateral regions showed the expected HbO decrease during CC. All contralateral regions showed minimal changes during CC, as expected. Overall, the Flow device showed good sensitivity to reduced cerebral blood flow; however, its use as a neuromonitor during cardiac surgery could be challenged by signal degradation due to hair, although this may be less of an issue with cardiac patients considering that most are older and have less hair.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.