effect of simvastatin locally applied from a bioactive polymer coating of implants on osteoporotic fracture healing at late period. Methods:Femur fracture model was established on normal or osteotoporotic mature female SD rats, intramedullary stabilization was achieved with uncoated titanium Kirschnerwires in normal rats(group A),with polymer-only coated vs. polymer plus simvastatin coated titanium Kirschner wires in osteoporotic rats(group B and C, respectively).Femurs were harvested after 12 weeks, and underwent radiographic and histologic analysis, as well as immunohistochemical evaluation for BMP-2 expression. Results:Radiographic results demonstrated progressed callus in the simvastatin-treated groups compared to the uncoated group.The histologic analysis revealed a significantly processed callus with irregular-shaped newly formed bone trabeculae in simvastatin-treated group. Immunohistochemical evaluation showed markedly higher expression levels of B:MP-2 in simvastatin-treated group.Conclusions: The present study revealed a improved fracture healing under local application of simvastatin in osteoporotic rat,which might partially from upregulation of the B:MP-2 expression at fractured site.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.