Spatial characterization of high harmonics (HH) and XUV coherent radiation is of paramount importance, along
with its temporal characterization. For many applications it will be necessary to accurately measure the beam
properties, just as it is important to know the beam characteristics for many laser experiments. For example,
high harmonics and attosecond pulses are being proposed as a front-end for the next generation X-ray free
electron lasers. This oscillator-amplifier-like arrangement will require well characterized high harmonic sources.
On the other hand, the electromagnetic radiation carries the combined signature of underlying quantum physical
processes at the molecular level and of the cooperative phase matching. For example, accurate reconstruction of
the high harmonic spatial wavefront, along with its temporal profile, gives us a complete range of tools to apply
to the fundamental quantum properties and dynamics associated with high harmonic generation. We present
a new concept of frequency resolved wavefront characterization that is particularly suitable for characterizing
XUV radiation. In keeping with tradition in the area we give it an acronym - SWORD (Spectral Wavefront
Optical Reconstruction by Diffraction). Our approach is based on an analysis of the diffraction pattern of a slit
situated in front of a flat-field spectrometer. As the slit is scanned, the spectrally resolved diffraction pattern
is recorded. Analyzing the measured diffractogram, we can reconstruct the wavefront. The technique can be
easily extended beyond the XUV spectral region. When combined with temporal characterization techniques all
information about the beam can be measured.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.