The Wide-Field Infrared Transient Explorer (WINTER) is a new fully robotic infrared time-domain survey instrument at the Palomar Observatory, commissioned in June 2023. WINTER is performing a seeing-limited time domain survey of the infrared (IR) sky to detect, discover, and characterize astrophysical time-domain phenomena. As a dedicated observatory for real-time detection and rapid follow-up of infrared transient and variable targets, WINTER represents a new capability for multi-messenger astrophysics. We will describe the robotic software architecture of the WINTER Supervisor Program (WSP) which handles autonomous scheduling of both surveys and target-of-opportunity interrupts, as well as control and remote monitoring of the observatory, telescope, and cameras.
The Wide-Field Infrared Transient Explorer (WINTER) is a new near-infrared time-domain survey instrument installed on a dedicated 1-meter robotic telescope at Palomar Observatory in June of 2023. WINTER’s science goals include robotic follow-up of kilonovae from binary neutron star (BNS) and neutron-star black-hole (NSBH) mergers, surveys to study galactic and extragalactic transients and variables, along with building up a deep, coadded image of the near-infrared sky. The project also serves as a technology demonstration for new large-format Indium Gallium Arsenide (InGaAs) detectors for cost-effective near-infrared photometry without cryogenic cooling. WINTER’s custom camera combines six InGaAs detectors as a first run of a newly-designed 1920 x 1080 pixel read out integrated circuit (ROIC). It uses a novel tiled fly’s-eye optical design to cover a > 1 degree-squared field of view in Y-, J-, and shortened-H-band filters (0.9-1.7μm). The survey currently operates with a median limiting magnitude of JAB ≈ 18.5, running nightly robotic surveys and target of opportunity programs. In parallel to these science programs, there is ongoing work to improve WINTER’s performance, which shows a factor of ∼ 10 decreased instrument efficiency from the design. Laboratory and on-sky testing suggest the sensor’s InGaAs diode array is performing properly, but sensitivity is being lost during amplification in the ROIC’s pixel amplifier. We present the laboratory and on-sky performance newly-commissioned WINTER observatory along with ongoing and future efforts to improve performance.
The Wide-Field Infrared Transient Explorer (WINTER) is a new time-domain instrument which will perform a seeing-limited survey of the near-infrared sky. Deployed on a dedicated 1-meter robotic telescope at Palomar Observatory, WINTER is designed to study transients of particular interest in the near-infrared including kilo-novae from gravitational-wave sources, supernovae, tidal disruption events, and transiting exoplanets around low mass stars with surveys to a depth of J=21 magnitudes. WINTER’s custom camera combines six commercial large-format Indium Gallium Arsenide (InGaAs) sensors, observing in Y, J, and a short-H (Hs) band filters (0.9-1.7 microns), and employs a novel tiled optical design to cover a >1 degree squared field of view with 90% fill factor. Each wide-format (1920 x 1080 pixels) InGaAs sensor operates at T = -50°C with a thermoelectric cooler, achieving background-limited photometry without cryogenic cooling. The tiled InGaAs sensors result in a wide field-of-view instrument with significant cost savings when compared to HgCdTe sensors. We present WINTER’s novel readout scheme, which includes custom electronics, firmware, and software for low-noise, real-time readout of the InGaAs sensors, including up to a 30x speed up of data reduction using GPUs. This work also outlines the cooling design for warm (T = -50°C) operation of the sensors with a two-stage thermometric cooler, copper heat pipes, and liquid cooling. We conclude with updates on the alignment, integration, and test of the WINTER instrument with a projected first light in Fall 2022.
The Large Lenslet Array Magellan Spectrograph (LLAMAS) is a facility-class Integral Field Spectrograph slated for commissioning on the 6.5-meter Magellan Baade telescope in Fall 2022. LLAMAS' Integral Field Unit (IFU) contains a 2400-element microlens array which projects pupil images onto corresponding optical fibers for high fill factor and illumination stability. The IFU subtends a 34" x 34" sky area sampled at 0.75" pitch with ~95% fill. The fibers fan out to eight replicated spectrometers. Each spectrometer covers 350-980nm per exposure at R=2200, split over three separately optimized wavelength channels. A set of 24 thermo-electrically cooled COTS CCD cameras records data for each exposure, with heat loads transferred to a dedicated chilled water loop. We provide a status update on LLAMAS' integration and test, which is in advanced stages. Upon commissioning, LLAMAS will be available to all Magellan users,
and any US investigator through NOIRLab allocation of NSF/MSIP nights.
The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r-process material in binary neutron star (BNS) merger remnants detected by LIGO. As a dedicated observatory for real-time detection and rapid follow-up of infrared transient events, WINTER represents a new capability for multi-messenger astrophysics. We present the status of the WINTER instrument, including laboratory characterization and initial results from commissioning at its robotic observatory.
The Lobster Eye X-ray Telescope (LEXT) is one of the payloads on-board the Gamow Explorer, which will be proposed to the 2021 NASA Explorer MIDEX opportunity. If approved, it will be launched in 2028, and is optimised to identify high-z Gamma Ray Bursts (GRBs) and enable rapid follow-up. The LEXT is a two module, CCD focal plane, large field of view telescope utilising Micro Pore Optics (MPOs) over a bandpass of 0.2 - 5 keV. The geometry of the MPOs comprises a square packed array of microscopic pores with a square cross-section, arranged over a spherical surface with a radius of curvature of 600 mm, twice the focal length of the optic, 300 mm. Working in the photon energy range 0.2 - 5 keV, the optimum L/d ratio (length of pore L and pore width d) is 60, and is constant across the whole optic aperture. This paper details the baseline design for the LEXT optic in order to full the science goals of the Gamow mission. Extensive ray-trace analysis has been undertaken and we present the development of the optic design along with the optimisation of the field of view, effective area and focal length using this analysis. Investigations as to the ideal MPO characteristics, e.g. coatings, pore size, etc., and details of avenues for further study are also given.
The Large Lenslet Array Magellan Spectrograph (LLAMAS) is an NSF-funded facility-class Integral Field Unit (IFU) spectrograph under construction for the 6.5-meter Magellan Telescopes. It covers a 37" x 37" solid angle with 2,400 optical fibers efficiently coupled by a double-sided microlens-array, producing R = 2, 000 spectra with 0.7511 spatial resolution. Its broad passband from λ = 350 970nm offers access to line and continuum measurements over a wide range in redshift. Light is multiplexed by the IFU into 8 compact, carbon-fiber bench mounted spectrographs utilizing VPH grisms. We employed several trades on cost-performance ratio while optimizing LLAMAS’ system design including: (a) Splitting the passband between 3 fast all-refractive camera systems with modest entrance pupils, (b) limiting the fibers per unit (i.e. slit length) and building more spectrographs to leverage on production volume, and (c) using a commercial CCD camera built around a common detector (e2v 42-40) and thermoelectric + liquid cooling. To boost blue throughput and achieve high-quality sky subtraction the spectrograph cluster is mounted next to the focal plane on a folded Cassegrain port with gravity-invariant support. This also allows the instrument to deploy quickly, and be fully accessible within 10 minutes on any night, serving as a facility unit for observing astrophysical transients. A sub-sized IFU (169 fibers), mounted in a full-sized front end package with a single spectrograph (2 cameras) was delivered to Magellan in March 2020. We present as-measured laboratory performance from this prototype, though on-sky commissioning was unfortunately cancelled because of the COVID-19 pandemic. This contribution therefore focuses on subsequent design evolution and status of the full facility instrument.
The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform the first seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r-process material in binary neutron star (BNS) merger remnants detected by LIGO. We have developed and tested a custom opto-mechanical mounting scheme for a 6-channel tiled optical system with <90% fill factor. Here, we present the mechanical design and testing approach used in the development of WINTER.
The Wide-field Infrared Transient Explorer (WINTER) is a 1x1 degree infrared survey telescope under devel- opment at MIT and Caltech, and slated for commissioning at Palomar Observatory in 2021. WINTER is a seeing-limited infrared time-domain survey and has two main science goals: (1) the discovery of IR kilonovae and r-process materials from binary neutron star mergers and (2) the study of general IR transients, including supernovae, tidal disruption events, and transiting exoplanets around low mass stars. We plan to meet these science goals with technologies that are relatively new to astrophysical research: hybridized InGaAs sensors as an alternative to traditional, but expensive, HgCdTe arrays and an IR-optimized 1-meter COTS telescope. To mitigate risk, optimize development efforts, and ensure that WINTER meets its science objectives, we use model-based systems engineering (MBSE) techniques commonly featured in aerospace engineering projects. Even as ground-based instrumentation projects grow in complexity, they do not often have the budget for a full-time systems engineer. We present one example of systems engineering for the ground-based WINTER project, featuring software tools that allow students or staff to learn the fundamentals of MBSE and capture the results in a formalized software interface. We focus on the top-level science requirements with a detailed example of how the goal of detecting kilonovae flows down to WINTER’s optical design. In particular, we discuss new methods for tolerance simulations, eliminating stray light, and maximizing image quality of a fly’s-eye design that slices the telescope’s focus onto 6 non-buttable, IR detectors. We also include a discussion of safety constraints for a robotic telescope.
We present the InGaAs detector system of the Wide-Field Infrared Transient Explorer (WINTER), a new infrared instrument operating on a 1 meter robotic telescope at the Palomar Observatory. These commercially produced sensors are cooled to -50 °C by a thermo-electric cooler integrated into a room temperature package. These warm InGaAs sensors represent a dramatic reduction in cost and complexity over HgCdTe systems and achieve sky background-limited performance across our science bands for exposures greater than a few seconds. We present the design and implementation of the WINTER detector system and readout electronics.
The Wide-Field Infrared Transient Explorer (WINTER) is a new infrared time-domain survey instrument which will be deployed on a dedicated 1 meter robotic telescope at the Palomar Observatory. WINTER will perform a seeing-limited time domain survey of the infrared (IR) sky, with a particular emphasis on identifying r -process material in binary neutron star (BNS) merger remnants detected by LIGO. We describe the scientific goals and survey design of the WINTER instrument. With a dedicated trigger and the ability to map the full LIGO O4 positional error contour in the IR to a distance of 190 Mpc within four hours, WINTER will be a powerful kilonova discovery engine and tool for multi-messenger astrophysics investigations. In addition to follow-up observations of merging binaries, WINTER will facilitate a wide range of time-domain astronomical observations, all the while building up a deep coadded image of the static infrared sky suitable for survey science. WINTER’s custom camera features six commercial large-format Indium Gallium Arsenide (InGaAs) sensors and a tiled optical system which covers a <1-square-degree field of view with 90% fill factor. The instrument observes in Y, J and a short-H (Hs) band tuned to the long-wave cutoff of the InGaAs sensors, covering a wavelength range from 0.9 – 1.7 microns. We present the design of the WINTER instrument and current progress towards final integration at the Palomar Observatory and commissioning planned for mid-2021.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.