It is challenging to track the rapid changes in drug concentrations after intra-arterial (IA) administration to elucidate the pharmacokinetics of this method of drug delivery. Traditional pharmacokinetic parameters (such as protein binding) that are highly relevant to intravenous (IV) administration do not seem to apply to IA injections. Regional drug delivery is affected by the biomechanics of drug injection, resting blood flow, and local tissue extraction. In-vivo and ex-vivo, optical methods for spatial mapping of drug deposition can assist in visualizing drug distributions and aid in the screening of potential drugs and carrier candidates. We present a multimodal approach for the assessment of drug distribution in postmortem tissue specimens using diffuse reflectance spectroscopy, multispectral imaging, and confocal microscopy and demonstrate feasibility of distinguishing route of administration advantages of liposome-dye conjugate delivery. The results of this study suggest that insight on drug dynamics gained by this aggregated approach can be used to help screen and/or optimize potential drug candidates and drug delivery protocols.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.