In an attempt to mitigate the effects of the atmosphere on the coherence of an optical (laser) beam, interest has recently been shown in changing the beam shape to determine if a different power distribution at the transmitter will reduce the effects of random fluctuations in the refractive index. Here, a model is developed for the field of a flattened Gaussian beam as it propagates through atmospheric turbulence, and the resulting effects on the scintillation of the beam and beam wander are determined. A comparison of these results is made with the like effects on a standard TEM00 Gaussian beam. The theoretical results are verified by comparison with a computer simulation model for the flattened Gaussian beam (FGB). Further, a determination of the probability of fade and of mean fade time under weak fluctuation conditions is determined using the widely accepted lognormal model. Although this model has been shown to be somewhat optimistic when compared to results obtained in field tests, it has value here in allowing us to compare the effects of atmospheric conditions on the fade statistics of the FGB with those of the lowest order Gaussian beam.
In an attempt to mitigate the effects of the atmosphere on the coherence of a laser beam, interest has recently been shown in changing the beam shape to determine if a different power distribution at the transmitter will reduce the effects of the random fluctuations in the refractive index. We develop a model for the scintillation index of a flattened Gaussian beam and compare this with that of the standard TEM00 Gaussian beam. We verify our results by comparison with a computer simulated model for the flattened beam.
The Shuttle Landing Facility runway at the Kennedy Space Center in Cape Canaveral, Florida is almost 5 km long and 100 m wide. Its homogeneous environment makes it a unique and ideal place for testing and evaluating EO systems. An experiment, with the goal of characterizing atmospheric parameters on the runway, was conducted in June 2005. Weather data was collected and the refractive index structure parameter was measured with a commercial scintillometer. The inner scale of turbulence was inferred from wind speed measurements and surface roughness. Values of the crosswind speed obtained from the scintillometer were compared with wind measurements taken by a weather station.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.