The Faint Intergalactic Medium Redshifted Emission Balloon (FIREBall-2) is a UV multi-object spectrograph designed to detect emission from the circumgalactic and circumquasar medium at low redshifts (0.3 < z < 1.0). The FIREBall-2 spectrograph uses a suborbital balloon vehicle to access a stratospheric transmission window centered around 205 nm and is fed by a 1-m primary parabolic mirror and a 2-mirror field corrector that allows an ≈11’ x 35’ field of view. The slit-mask spectrograph can access dozens of galaxy targets per field, with each target spectrum read out on a UV electron-multiplying CCD detector. Following a flight in 2018, several refurbishments and modifications were made to the instrument and telescope to prepare for additional flight opportunities. Here we present an overview of upgrades and improvements made since the previous flight and discuss the 2023 field campaign, which culminated in a flight from Fort Sumner, New Mexico in September, 2023.
The instrumentation of the Prime Focus Spectrograph (PFS), a next generation facility instrument on the Subaru telescope, is now in the final phase of its commissioning process and its general, open-use operations for sciences will provisionally start in 2025. The instrument enables simultaneous spectroscopy with 2386 individual fibers distributed over a very wide (∼1.3 degrees in diameter) field of view on the Subaru’s prime focus. The spectra cover a wide range of wavelengths from 380nm to 1260nm in one exposure in the Low-Resolution (LR) mode (while the visible red channel has the Medium-Resolution (MR) mode as well that covers 710−885nm). The system integration activities at the observatory on Maunakea in Hawaii have been continuing since the arrival of the Metrology Camera System in 2018. On-sky engineering tests and observations have also been carried out continually since September 2021 and, despite various difficulties in interlacing commissioning processes with development activities on the schedule and addressing some major issues on hardware and software, the team successfully observed many targeted stars as intended over the entire field of view (Engineering First Light) in September 2022. Then in parallel to the arrival, integration and commissioning of more hardware components, validations and optimizations of the performance and operation of the instrument are ongoing. The accuracy of the fiber positioning process and the speed of the fiber reconfiguration process have been recently confirmed to be ∼ 20−30μm for 95% of allocated fibers, and ∼130 seconds, respectively. While precise quantitative analyses are still in progress, the measured throughput has been confirmed to be consistent with the model where the information from various sub-components and sub-assemblies is integrated. Long integration of relatively faint objects are being taken to validate an expected increase of signal-to-noise ratio as more exposures are taken and co-added without any serious systematic errors from, e.g., sky subtraction process. The PFS science operation will be carried out in a queue mode by default and various developments, implementations and validations have been underway accordingly in parallel to the instrument commissioning activities. Meetings and sessions are arranged continually with the communities of potential PFS users on multiple scales, and discussions are iterated for mutual understanding and possible optimization of the rules and procedures over a wide range of processes such as proposal submission, observation planning, data acquisition and data delivery. The end-to-end processes of queue observations including successive exposures with updated plans based on assessed qualities of the data from past observations are being tested during engineering observations, and further optimizations are being undertaken. In this contribution, a top-level summary of these achievements and ongoing progresses and future perspectives will be provided.
We present the integration of a new calibration system into the Faint Intergalactic-medium Redshifted Emission Balloon-2 (FIREBall-2), which added in-flight calibration capability for the recent September 2023 flight. This system is composed of a calibration source box containing zinc and deuterium lamp sources, focusing optics, electronics, sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through non-sequential modeling for the near-UV (191 to 221 nm) for spectrograph slit mask position calibration, electron multiplying charged-coupled device (EMCCD) gain amplification verification, and wavelength calibration. Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements. FIREBall-2 flew in 2023, but did not collect calibration data due to early termination of the flight.
The integration of a new calibration system into FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon-2) allows in-flight calibration capability for the upcoming Fall 2023 flight. This system is made up of a calibration box that contains zinc and deuterium lamp sources, focusing optics, electronics, and sensors, and a fiber-fed calibration cap with an optical shutter mounted on the spectrograph tank. We discuss how the calibration cap is optimized to be evenly illuminated through nonsequential modeling for the near-UV (200-208nm). Then, we present the pre-flight performance testing results of the calibration system and their implications for in-flight measurements.
We present a comprehensive stray light analysis and mitigation strategy for the FIREBall-2 ultraviolet balloon telescope. Using nonsequential optical modeling, we identified the most problematic stray light paths, which impacted telescope performance during the 2018 flight campaign. After confirming the correspondence between the simulation results and postflight calibration measurements of stray light contributions, a system of baffles was designed to minimize stray light contamination. The baffles were fabricated and coated to maximize stray light collection ability. Once completed, the baffles will be integrated into FIREBall-2 and tested for performance preceding the upcoming flight campaign. Given our analysis results, we anticipate a substantial reduction in the effects of stray light.
This conference presentation was prepared for the Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray conference at SPIE Astronomical Telescopes and Instrumentation, 2022.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is now being tested on the telescope. The instrument is equipped with very wide (1.3 degrees in diameter) field of view on the Subaru’s prime focus, high multiplexity by 2394 reconfigurable fibers, and wide waveband spectrograph that covers from 380nm to 1260nm simultaneously in one exposure. Currently engineering observations are ongoing with Prime Focus Instrument (PFI), Metrology Camera System (MCS), the first spectrpgraph module (SM1) with visible cameras and the first fiber cable providing optical link between PFI and SM1. Among the rest of the hardware, the second fiber cable has been already installed on the telescope and in the dome building since April 2022, and the two others were also delivered in June 2022. The integration and test of next SMs including near-infrared cameras are ongoing for timely deliveries. The progress in the software development is also worth noting. The instrument control software delivered with the subsystems is being well integrated with its system-level layer, the telescope system, observation planning software and associated databases. The data reduction pipelines are also rapidly progressing especially since sky spectra started being taken in early 2021 using Subaru Nigh Sky Spectrograph (SuNSS), and more recently using PFI during the engineering observations. In parallel to these instrumentation activities, the PFS science team in the collaboration is timely formulating a plan of large-sky survey observation to be proposed and conducted as a Subaru Strategic Program (SSP) from 2024. In this article, we report these recent progresses, ongoing developments and future perspectives of the PFS instrumentation.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the Subaru telescope, is a very wide- field, massively multiplexed, and optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed in the 1.3 degree-diameter field of view. The spectrograph system has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously deliver spectra from 380nm to 1260nm in one exposure. The instrumentation has been conducted by the international collaboration managed by the project office hosted by Kavli IPMU. The team is actively integrating and testing the hardware and software of the subsystems some of which such as Metrology Camera System, the first Spectrograph Module, and the first on-telescope fiber cable have been delivered to the Subaru telescope observatory at the summit of Maunakea since 2018. The development is progressing in order to start on-sky engineering observation in 2021, and science operation in 2023. In parallel, the collaboration is trying to timely develop a plan of large-sky survey observation to be proposed and conducted in the framework of Subaru Strategic Program (SSP). This article gives an overview of the recent progress, current status and future perspectives of the instrumentation and scientific operation.
The payload of the Faint Intergalactic Redshifted Emission Balloon (FIREBall-2), the second generation of the FIREBall instrument (PI: C. Martin, Caltech), has been calibrated and launched from the NASA Columbia Scientific Balloon Facility in Fort Sumner, New Mexico. FIREBall-2 was launched for the first time on the September 22, 2018, and the payload performed the very first multi-object acquisition from space using a multi-object spectrograph. Our performance-oriented paper presents the calibration and last ground adjustments of FIREBall-2, the in-flight performance assessed based on the flight data, and the predicted instrument’s ultimate sensitivity. This analysis predicts that future flights of FIREBall-2 should be able to detect the HI Lyα resonance line in galaxies at z ∼ 0.67, but will find it challenging to spatially resolve the circumgalactic medium.
Here we discuss advances in UV technology over the last decade, with an emphasis on photon counting, low noise, high efficiency detectors in sub-orbital programs. We focus on the use of innovative UV detectors in a NASA astrophysics balloon telescope, FIREBall-2, which successfully flew in the Fall of 2018. The FIREBall-2 telescope is designed to make observations of distant galaxies to understand more about how they evolve by looking for diffuse hydrogen in the galactic halo. The payload utilizes a 1.0-meter class telescope with an ultraviolet multi-object spectrograph and is a joint collaboration between Caltech, JPL, LAM, CNES, Columbia, the University of Arizona, and NASA. The improved detector technology that was tested on FIREBall-2 can be applied to any UV mission. We discuss the results of the flight and detector performance. We will also discuss the utility of sub-orbital platforms (both balloon payloads and rockets) for testing new technologies and proof-of-concept scientific ideas.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward.
The circumgalactic medium (CGM) plays a critical role in the evolution of galaxy discs, as it hosts important mechanisms regulating their replenishment through inflows and outflows. Besides absorption spectroscopy, mapping of the HI Lyα emission of z>2 CGM is bringing a new perspective with a complete 2- or 3-D mapping. Despite this benefit, data in emission are very scarce in the large time span from z∼2 to the present because of the difficulties inherent to vacuum UV observations. The FIREBall-2 (Faint Intergalactic Redshifted Emission Balloon) instrument has been developed to help fill this gap and is scheduled for launch in September 2018. It has been optimized to provide a bi-dimensional (x, λ) map of the extremely faint diffuse Ly-a HI emission in the CGM at z∼0.7 and has the capability to observe ~200 galaxies and a dozen QSOs in a single night flight. Given its wide field of view (FOV) of 20x40 arcmin2, its angular resolution of 6-10 arcsec and spectral resolution above 1000, FIREBall-2 will bring important insights about the gas distribution in the CGM, and the velocity/temperature fields, and has the potential to bring statistical constraints. The instrument is a balloon-borne 1m telescope coupled to a UV multi-object spectrograph (MOS) designed to image the CGM in emission via specific spectral lines (Lya, CIV, OVI) redshifted in a narrow UV band [1990 - 2130]A for the nearby universe (0.2< z <1). The optical design relies on a 1.2-meter moving siderostat that stabilizes the beam and reflects the light on a fixed paraboloid which in turn images it at the entrance of the payload. This payload is constituted of a focal corrector followed by a slit Multi-Object Spectrograph (reflective 2400 g/mm holographic aspherical grating located between two Schmidt mirrors). The objects selection is achieved with a series of pre-installed precision mask systems that also feed the fine guidance camera. The detector is a e2v electron multiplying CCD coated and delta-doped by the Jet Propulsion Laboratory. FIREBall-2 is funded by CNES and NASA and is developed in cooperation with a Franco-American consortium composed of LAM, CALTECH, Columbia University, JPL and CST-CNES. In this presentation, we describe the final ground calibration of the instrument. We explain what technical specifications ensue from the scientific goals of the mission and we will then highlight why this optical design has been chosen. The calibration of the instrument (alignment - through focus - distortion) will be presented followed by the analysis of the instrument scientific performances. We will then describe the improvement and the calibration of the ZEMAX-coupled instrument model developed at LAM, based on these final performances. This model is finally used to make an end-to-end prediction of the observations of the emission of the CGM from a large halo in a cosmological simulation.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6 - 2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
The FIREBall-2 Instrument Model (FIREBallIMO) is a piece of software simulating the optical behaviour of the Multi-Object Two-Curved Schmidt Slit Spectograph of FIREBall-2 (Faint Intergalactic Redshifted Emission BALLoon), a balloon-borne telescope (40 km in alt.) designed to perform a direct detection of the faint Circum Galactic Medium (CGM) in emission around low-z galaxies. The spectrograph has been optimized to operate in a narrow UV band [195-225] nanometers, the so-called atmospheric sweet spot, where the sky background presents no emission lines and can be considered approximately at, a value of 500 continnum units, seen through an optical transmission of 50% at an atmospheric pressure of 3 millibars. This paper gives an overview of the software current modular architecture after a year of productive effort (in terms of parametric model space definition, associated data cubes generation and digital processing) starting from the instrument initial optical model designed under Zemax software to the final 2D-detected image. A special emphasis is put on the design of a cython-wrapped driver able to retrieve dense ray-sampled PSFs out of the Zemax box efficiently. The optical mappings and distortions from the sky to the spectrograph's entrance slit plane and from the sky to the detection plane are presented, as well as some end-to-end simulations leading to Signal-to-Noise Ratio estimates computed on artificial point-like or extended test sources.
The Faint Intergalactic Redshifted Emission Balloon (FIREBALL) had its first scientific flight in June 2009.
The instrument combines microchannel plate detector technology with fiber-fed integral field spectroscopy on an
unstable stratospheric balloon gondola platform. This unique combination poses a series of calibration and data
reduction challenges that must be addressed and resolved to allow for accurate data analysis. We discuss our
approach and some of the methods we are employing to accomplish this task.
Photometry of astrophysical sources, galaxies and stars, in crowded field images, if an old problem, is still
a challenging goal, as new space survey missions are launched, releasing new data with increased sensibility,
resolution and field of view. The GALEX mission, observes in two UV bands and produces deep sky images
of millions of galaxies or stars mixed together. These UV observations are of lower resolution than same field
observed in visible bands, and with a very faint signal, at the level of the photon noise for a substantial fraction
of objects. Our purpose is to use the better known optical counterparts as prior information in a Bayesian
approach to deduce the UV flux.
Photometry of extended sources has been addressed several times using various techniques: background
determination via sigma clipping, adaptative-aperture, point-spread-function photometry, isophotal photometry, to lists some. The Bayesian approach of using optical priors for solving the UV photometry has
already been applied by our team in a previous work. Here we describe the improvement of using the extended
shape inferred by deblending the high resolution optical images and not only the position of the optical
sources.
The resulting photometric accuracy has been tested with simulation of crowded UV fields added on top
of real UV images. Finally, this helps to converge to smaller and flat residual and increase the faint source
detection threshold. It thus gives the opportunity to work on 2nd order effects, like improving the knowledge of
the background or point-spread function by iterating on them.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.