A new approach for direct third-harmonic generation is the generation inside a stack of dielectric layers. At present, our highest conversion efficiency achieved is 3.5%. This contribution provides an overview of the design process, production, measurement results, and their agreement with simulation results. To create the frequency tripling mirror designs, we use a combination of a Monte Carlo algorithm and a Meep-based algorithm to solve Maxwell's equations. Mandatory for the production of the mirrors is a very precise knowledge of the dispersion data of the materials used. For this purpose, the dispersion data of the coating materials are re-fitted using in-situ transmission data of a BBM after each coating run. In combination with various measures to maintain a stable refractive index of the used Hf_xAl_yO, high coating thickness accuracies are achieved in this way. Finally, experimental measurements and simulation results are compared using the post-fitted dispersion and layer thickness data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.